DOI QR코드

DOI QR Code

히스톤 탈아세틸화 효소 억제제 trichostatin A가 C2C12 myoblast 세포 분화와 세포주기 조절인자의 발현에 미치는 영향

Effects of Histone Deacetylase Inhibitor, Trichostatin A, on the Differentiation of C2C12 Myoblasts and the Expression of Cell Cycle Regulators

  • 이원준 (이화여자대학교 건강과학대학)
  • Lee, Won-Jun (College of Health Science, Ewha Womans University)
  • 발행 : 2007.07.30

초록

본 연구는 분화 전단계인 C2C12 myoblast세포에 중요한 후천적 기작의 하나인 DNA 히스톤 단백질의 아세틸화를 조절하였을 때 일어나는 변화를 살펴본 결과, 히스톤 탈아세틸화 효소를 trichostatin A로서 억제시키자 C2C12 myoblast 세포가 smooth muscle로 분화하였다. 이는 immunofluorescentstaining을 통해 smooth muscle ${\alpha}-actin$의 발현 증가를 trishostatin A로 처리한 세포에서 관찰하였으며, DAPI 염색을 통해 대조군 세포와 비교하여 세포의 증식이 많이 억제됨을 관찰하였다. 또한 real-time PCR 결과는 smooth muscle ${\alpha}$-actin과 transgelin mRNA의 발현이 trichostatin A 처리군 세포에서 현저히 증가함을 보여주었다. 이러한 결과를 바탕으로 히스톤 단백질의 탈아세틸화 억제는 C2C12 myoblast 세포의 분화에 매우 중요한 역할을 하며, 또한 C2C12 myoblast 세포를 골격근인 다핵의 myotube로 분화시키지 않고, smooth muscle로 분화시킴을 알 수 있었다. 이것은 분명히 HDAC억제제 인 trichostatin A가 DNA 히스톤 단백질의 HDAC 효소에 의한 탈아세틸화를 강력히 억제하고, 이러한 HDAC효소의 억제는 세포주기에 있어서 증식과 분화를 조절하는 유전자들의 발현을 조절하였음을 시사한다. 이를 검증하기 위해 세포주기 조절인자인 p21과 cyclin Dl mRNA의 발현을 조사한 결과 세포를 증식단계로 진행하는데 있어서 필수적인 cdk 억제제인 p21 mRNA의 발현이 trichostatin A로 처리한 세포에서 현저히 증가함을 보였으며, 세포 증식을 유도하는 cyclin Dl mRNA의 발현은 trichostatin A를 처 리 한 후 24시간 후 유의하게 감소함을 보였는데 이는 trichostatin A가 세포증식을 억제하는 초기단계에서 cyclin Dl 유전자의 발현을 조절함을 보여준다. 향후 연구에서는 또 하나의 중요한 후천적 기작인 DNA 메틸화와 히스톤 아세틸화가 유전자 발현을 조절하는데 있어서 상호작용에 대한 연구가 필요할 것으로 생각된다.

The purpose of this study was to determine the modulating effects of histone deacetylase inhibitor, trichostatin A, on the differentiation of mouse C2C12 myoblasts. We demonstrated that trichostatin A induced morphological changes of C2C12 myoblasts into smooth muscles and significantly increased the gene expression of smooth muscle markers including smooth muscle ${\alpha}-actin$ and transgelin. These results were due to the change in the expression level of cell cycle regulators in trichostatin A-treated C2C12 cells. Real-time PCR data revealed that cyclin dependent kinase inhibitor, p21, mRNA expression was significantly increased in trichostatin A-treated C2C12 cells. However, trichostaDn A rapidly decreased cyclin Dl mRNA expression necessary for cell cycle progression in 24hr after treatment. In conclusion, the strong inhibitory effects of trichostatin A on histone deacetylation induced transdifferentiation of C2C12 myoblasts into smooth muscle cells and these results are partly due to the changes in the expression of cell cycle regulators such as p21 and cyclin D1.

키워드

참고문헌

  1. Dashwood, R. H., M. C. Myzak and E. Ho. 2006. Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention? Carcinogenesis 27, 344-349. https://doi.org/10.1093/carcin/bgi253
  2. El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825. https://doi.org/10.1016/0092-8674(93)90500-P
  3. Elledge, S. J. 1996. Cell cycle checkpoints: preventing and identity crisis. Science 274, 1664-1672. https://doi.org/10.1126/science.274.5293.1664
  4. Fanzani, A., F. Colombo, R. Giuliani, A. Preti and S. Marchesini. 2006. Insulin-like growth factor 1 signaling regulates cytosolic sialidase Neu 2 expression during myoblast differentiation and hypertrophy. FEBS Journal 273, 3709-3721. https://doi.org/10.1111/j.1742-4658.2006.05380.x
  5. Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389, 349-352. https://doi.org/10.1038/38664
  6. Halevy, O., B. G. Novitch, D. B. Spicer, S. X. Skapek, J. Rhee and G. J. Hannon. 1995. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267, 1018-1021. https://doi.org/10.1126/science.7863327
  7. Ishida, S., E. Huang, H. Zuzan, R. Spang, G. Leone, M. West and J. R. Nevins. 2001. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA micro array analysis. Molecular and Cellular Biology 21, 4684-4699. https://doi.org/10.1128/MCB.21.14.4684-4699.2001
  8. Jones, P. A. and S. B. Baylin. 2002. The fundamental role of epigenetic events in cancer. Nature Review of Genetics 3, 415-428.
  9. Kornberg, R. D. and Y. Lorch. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryotic chromosome. Cell 98, 285-294. https://doi.org/10.1016/S0092-8674(00)81958-3
  10. Langen R. C. A. M. Schols, M. C. Kelder, J. L. Van Der Velden, E. F. Wouters and Y. M. Janssen-Heininger. 2002. Tumor necrosis factor-alpha inhibits myogenesis through redox dependent and -independent pathways. American Journal of Physiology 283, C714-C721. https://doi.org/10.1152/ajpcell.00418.2001
  11. Latella, L., A. Sacco, D. Pajalunga, M. Tiainen, D. Macera, M. D'Alngelo, A. Felici, A. Sacchi and M. Crescenzi. 2001. Reconstitution of cyclin D1-associated kinase activity drives terminally differentiated cells into the cell cycle. Molecular and Cellular Biology 21, 5631-5643. https://doi.org/10.1128/MCB.21.16.5631-5643.2001
  12. Li, B., M. Carey and J. L. Workman. 2007. The role of chromatin during transcription. Cell 128, 707-719. https://doi.org/10.1016/j.cell.2007.01.015
  13. Lundberg, A. S. and R. A. Weinberg. 1998. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Molecular and Cellular Biology 18, 753-761. https://doi.org/10.1128/MCB.18.2.753
  14. Mizzen, C. A. and C. D. Allis. 1998. Linking histone acetylation to transcriptional regulation. Cellular and Molecular Life Sciences 54, 6-20. https://doi.org/10.1007/s000180050121
  15. Morgan, D. O. 1997. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annual Review of Cell and Developmental Biology 13, 261-291. https://doi.org/10.1146/annurev.cellbio.13.1.261
  16. Park, I. H., E. Erbay, P. Nuzzi and J. Chen. 2005. Skeletal myocyte hypertrophy requires mTOR kinase and S6K1. Experimental Cell Research 309, 211-219. https://doi.org/10.1016/j.yexcr.2005.05.017
  17. Papeleu, P., T. Vanhaecke, G. Elaut, M. Vinken, T. Henkens, S. Snykers and V. Rogiers. 2005. Differential effects of histone deacetylase inhibitors in tumor and normal cells-what is the toxicological relevance? Critical Reviews in Toxicology 35, 363-378. https://doi.org/10.1080/10408440590935639
  18. Sabourin, L. A. and M. A. Rudnicki. 2000. The molecular regulation of myogenesis. Clinical Genetics 57, 16-25. https://doi.org/10.1034/j.1399-0004.2000.570103.x
  19. Sherr, C. J. 1994. G1 phase progression: cycling on cue. Cell 79, 551-555. https://doi.org/10.1016/0092-8674(94)90540-1
  20. Sherr, C. J. and J. M. Roberts. 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes & Development 9, 1149-1163. https://doi.org/10.1101/gad.9.10.1149
  21. Sowa, Y., T. Orita, S. Hiranabe-Minamikawa, K. Nakano, T. Mizuno, H. Nomura and T. Sakai. 1999. Histone deacetylase inhibitor activates the p21/WAF1/Cip1 gene promoter through the Spl sites. Annals of the New York Academy of Sciences 886, 195-199. https://doi.org/10.1111/j.1749-6632.1999.tb09415.x
  22. Spangenburg, E. E., D. K. Bowles and F. W. Booth. 2004. Insulin-like growth factor-induced transcriptional activity of the skeletal alpha-actin gene is regulated by signaling mechanisms linked to voltage-gated calcium channels during myoblast differentiation. Endocrinology 145, 2054-2063. https://doi.org/10.1210/en.2003-1476
  23. Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes & Development 12, 599-606. https://doi.org/10.1101/gad.12.5.599
  24. Ullmannova, V., P. Stockbauer, M. Hradcova, J. Soucek and C. Haskovec. 2003. Relationship between cyclin D1 and p21(Waf1/Cip1) during differentiation of human myeloid leukemia cell lines. Leukemia Research 27, 1115-1123. https://doi.org/10.1016/S0145-2126(03)00103-6
  25. Workman, J. L. 2006. Nucleosome displacement in transcription. Genes & Development 20, 2009-2017. https://doi.org/10.1101/gad.1435706
  26. Wolffe, A. P. and J. J. Hayes. 1999. Chromatin disruption and modification. Nucleic Acids Research 27, 711-720. https://doi.org/10.1093/nar/27.3.711