DOI QR코드

DOI QR Code

Isolation and Characterization of Lactobacillus brevis AML15 Producing γ-Aminobutyric acid

(γ-Aminobutyric acid를 생산하는 Lactobacillus brevis AML15의 분리 및 특성

  • Shin, Ji-Won (School of Bioresources Science, Andong National University) ;
  • Kim, Dong-Geol (School of Bioresources Science, Andong National University) ;
  • Lee, Yong-Woo (School of Bioresources Science, Andong National University) ;
  • Lee, Hyoung-Seok (School of Bioresources Science, Andong National University) ;
  • Shin, Kee-Sun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Chung-Sig (Hans Bio Co., B.I. center) ;
  • Kwon, Gi-Seok (School of Bioresources Science, Andong National University)
  • 신지원 (안동대학교 생명자원과학부) ;
  • 김동걸 (안동대학교 생명자원과학부) ;
  • 이용우 (안동대학교 생명자원과학부) ;
  • 이형석 (안동대학교 생명자원과학부) ;
  • 신기선 (한국생명공학연구원) ;
  • 최충식 ((주)한스바이오) ;
  • 권기석 (안동대학교 생명자원과학부)
  • Published : 2007.07.30

Abstract

For the screening of ${\gamma}-aminobutyric$ acid (CABA)-producing bacteria, 86 bacterial strains which produce GABA were isolated from Kimchi and Salted fisk .Among these, three strains designated AML15, AML45-1, AML72 with relatively high GABA productivity were selecled by thin layer chromatography (TLC). To elucidate the relationship between isolated strains and the genus Lactobacillus, their 16S rDNA sequence were examined. The result of their DNA sequences showed 99% similarity with Lactobacillus brevis ATCC 367. On the basis of the these results, isolated strains were identified as Lactobacillus brevis and designated L. brevis AML15. In order to determine the optimum conditions for GABA production, the isolated strains were cultivated in pyridoxal phosphate (PLP) and monosodium glutami. acid (MSG). Results showed that L. brevis AML15 had the highest CABA productivity with 10,424 $nM/{\mu}l$ concentration in MRS broth containing 5% (w/v) MSG and 10 ${\mu}M$ PLP at pH 5.0. The results imply that L. brevis AML15 has the potential to be developed as a strain for GABA hyper-production.

국내해안의 젓갈과 김치류로부터 86종의 GABA 생산균주를 분리하였다. 분리된 균주들을 Thin layer chromatography를 이용하여 GABA 생성능이 우수한 AML15, AML45-1, AML72의 3종의 균주를 선발하였다. 선별된 3종의 균주의 아미노산 분석 결과 GABA 생성능이 가장 우수한 AML15 균주를 본 실험에 사용하였다. AML15의 분류학적 위치를 규명하기 위하여 16S ribosomal DNA 영역의 부분염기서열 분석을 실시하였다. 165 rDNA 분석결과 Lactobacillus brevis ATCC 367과 99%의 유사도를 나타내어 L. brevis AML15로 명명하였다. MRS 배지에 최종 전환 농도로 설정된 5%(w/v) monosodium glutamic acid를 첨가하고 배지의 초기 pH를 4.0, 5.0과 6.0으로 조정하여 배양한 결과 배지의 초기 pH가 5.0일 때 GABA 생성능이 가장 높게 조사되었다. GABA 생산배지에 GAD 효소활성에 조효소로 작용하는 PLP를 0. 10. 50과 100 ${\mu}M$의 농도로 첨가하여 아미노산 분석결과 PLP를 10${\mu}M$ 첨가하였을 때 10,424 $nM/{\mu}$l의 GABA가생산되었다. PLP를 첨가하지 않았을 때보다 PLP 첨가 후 GABA 생성이 증가됨을 확인할 수 있었다.

Keywords

References

  1. Alan, W. B and J. S. Barry. 1997. The metabolism and functions of $\gamma$-aminobutyric acid. Plant Physiol. 115, 1-5. https://doi.org/10.1104/pp.115.1.1
  2. Barry, J. S., W. B. Alan and D. M. Michael. 1999. Metabolism and function of gamma-amino butyric acid. Trends in plant science 4, 446-452. https://doi.org/10.1016/S1360-1385(99)01486-7
  3. Chang, J. S., B. S. Lee and Y. G. Kim. 1992. Changes in $\gamma$-aminobutyric acid (CABA) and the main constituents by a treatment conditions and of anaerobically treated green leaves. Kor. J. Food Sci. Technol. 24, 315-319.
  4. Choi, S. I., J. W. Lee, S. M. Park, M. Y. Lee, G. E. Ji, M. S. Park and T. R. Heo. 2006. Improvement of $\gamma$-Aminobutyric acid (CABA) production using cell entrapment of Lactobacillus brevis CABA 057. J. Microbiol. Biotechnol. 16, 562-568.
  5. Choi, Y. S., J. H. Bahn, S. G. Jeon, Y. M. Chung, J. W. Hong, J. Y. Ahn, E. H. Lee, S. W. Cho, J. K. Park and N. I. Beak. 1998. Stimulatory effect of ginsenosides on bovin brain glutamate decarboxylase. J. Biochemistry and Molecular biology 31, 233-239.
  6. Eam, J. I. 2004. Procudtion of $\gamma$-aminobutyric acid by Lactobacillus sp. isolated tradirional jeotgal. MS. Thesis. Kyungpook National University.
  7. Flora, J., C. Doreen, H. K. Lim, N. Tom and Lin. Stephen. 2004. Production of GABA by cultured hippocampal glial cells. Neurochemistry International 45, 273-283. https://doi.org/10.1016/j.neuint.2003.11.021
  8. Hsueh, F. W., S. T. Yung, L. L. Mu and S. O. Andi. 2006. Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food chemistry 96, 648-653. https://doi.org/10.1016/j.foodchem.2005.02.046
  9. Isato, K and H. Kunio. 2000. Change in $\gamma$-Aminobutyric acid content during beni-koji making. Biosci. Bioteclmol. Biochem. 64, 617-619 https://doi.org/10.1271/bbb.64.617
  10. Jeon, J. H 2004. Production of $\gamma$-aminobutyric acid by immobilization of lactic acid bacteria isolated from salt fermented anchovy. MS. Thesis. Kyungsung University.
  11. Jeon, J. H, H. D. Kim, H. S. Lee and B. H. Ryu. 2004. Isolation and identification of Lactobacillus sp. produced $\gamma$-amino butyric acid (GABA) from traditional fermented anchovy. Kor. J. Food & Nutr. 17, 72-19.
  12. Komastsuzaki, N., K. Tsukahara, H. Toyoshima, T. Suzuki, N. Shimizu and T. Kimura. 2007. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Engineering 78, 226-560.
  13. Komatsuzaki. N., J. Shima, S. Kawamoto, H. Momose and T. Kimura. 2005. Production of $\gamma$-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology 22, 497-504. https://doi.org/10.1016/j.fm.2005.01.002
  14. Kang, M. S. 2002. A study on $\gamma$-Amino butyric acid production by Lactobacillus sakei B2-16. MS. Thesis. Yonsei University.
  15. Nicolas, B. and F. Hillel. 2004. GABA in plante: just a metabolite? Trends in plant science 9, 110-115. https://doi.org/10.1016/j.tplants.2004.01.006
  16. Nicoletta, A., B. Alcide and R. Remo. 1994. Anaerobic accumulation of 4-aminobutyrate in rice seedlings; Cause and significance. Phytochenlistry 38, 1147-1150.
  17. Oh, S. H. and K. B. Park. 2005. Production and characterization of GABA yogurt. Food sci. Biotechnol. 14, 518-522.
  18. Oh, C. H. and S. H Oh. 2004. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apotosis. J. Med. Food 7, 19-23. https://doi.org/10.1089/109662004322984653
  19. Oh, S. H., Y. J. Moon and C. H Oh. 2003. $\gamma$-Aminobutyric acid (GABA) content of selected uncooked foods. Nutraceuticals & Food 8, 75-78. https://doi.org/10.3746/jfn.2003.8.1.075
  20. Oh, S. H 2003. Stimulation of $\gamma$-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin. J. Biochemistry and Molecular Biology 36, 319-325. https://doi.org/10.5483/BMBRep.2003.36.3.319
  21. Oh, S. H and C. H Oh. 2003. Brown lice extracts with enhanced levels of GABA stimulate immune cells. Food sci. Biotechnol. 12, 248-252.
  22. Park, K. B and S. H. Oh. 2006. Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource Technology 1-8.
  23. Park, J. H and H. K. Choi. 2001. Effect of anaerobic condition after green leaves storage on the $\gamma$-Aminobutyric acid (GABA) and quality of green tea. Kor. J. Tea Soc. 7, 163-171.
  24. Tsukatani, T., T. Higuchi and K. Matsumoto. 2005. Enzyme-based microtiter plate assay for $\gamma$-aminobutyric acid: Application to the screening of $\gamma$-aminobutyric acidproducing lactic acid bacteria. Analytica chimica acta. 540, 293-297. https://doi.org/10.1016/j.aca.2005.03.056
  25. Yokoyama, S., J. Hiramatsu and K. Hayakawa. 2002. Production of $\gamma$-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO_12005. J. Bioscience and Bioengineering 93, 95-97. https://doi.org/10.1016/S1389-1723(02)80061-5
  26. Yoon, J. H., S. B. Kim, H. J. Kim, W. Y. Kim, S. T. Lee, M. Goodfellow and Y. H. Park. 1996. Identification of Saccharomonospora strains by the use of genomic DNA fragments rRNA gene probes. Int. J. Syst. Bacteriol. 46, 502-505. https://doi.org/10.1099/00207713-46-2-502
  27. Yoon, J. H., S. T. Lee and Y. H. Park. 1998. Inter-and intraspecific phylogenetic analysis of the genus Nocardioides and related texa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48, 187-194. https://doi.org/10.1099/00207713-48-1-187
  28. Yoon, J. H, S. T. Lee, S. B. Kim, W. Y. Kim, M. Goodfellow and Y. H. Park. 1997. Restriction fragment length polymorphism analysis of PCR-ampligied 165 ribosomal DNA for rapid identification of Saccharomonospora strains. Int. J. Syst. Bacteriol. 47, 111-114. https://doi.org/10.1099/00207713-47-1-111

Cited by

  1. Production of GABA (gamma amino butyric acid) by Lactic Acid Bacteria vol.33, pp.3, 2013, https://doi.org/10.5851/kosfa.2013.33.3.377
  2. Enhancement of the Cognitive Effects of γ-Aminobutyric Acid from Monosodium Glutamate Fermentation byLactobacillus sakeiB2-16 vol.26, pp.1, 2012, https://doi.org/10.1080/08905436.2011.645937
  3. Optimization of γ-Aminobutyric Acid Production Using Lactobacillus brevis spp. in Darae Sap vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.214
  4. The Effects of Germination Conditions on GABA and the Nutritional Components of Barley vol.44, pp.1, 2012, https://doi.org/10.9721/KJFST.2012.44.1.041