DOI QR코드

DOI QR Code

한국내 세잎양지꽃의 유전적 다양성과 집단구조

Genetic Diversity and Population Structure of Potentilla freyniana in Korea

  • 허만규 (동의대학교 분자생물학과)
  • Huh, Man-Kyu (Department of Molecular Biology, Dong-eui University)
  • 발행 : 2007.07.30

초록

전분 젤 전기영동을 사용하여 한국내 분포하는 세잎양지꽃 8개 집단에서 유전적 다양성과 집단구조를 평가하였다. 종수준에서 효소내 다형현상을 나타내는 대립유전자좌위는 68.4%였다. 집단 수준에서 유전적 다양도는 유사한 생활사를 가진 초본류의 평균값에 비해 높았다. 전체 유전적 다양도는 조사한 8개 집단에 대해 0.190과 0.584사이에 있었으며 평균은 0.371이였다. 집단내 유전적 다양도는 0.354였다. 집단간 분화정도는 비교적 낮았다($G_{ST}$ = 0.065). 고정지수 분석 결과 많은 집단과 대립유전자좌위에서 이형접합체의 결핍이 있었다. 이는 세잎양지꽃은 줄기에서 꽃을 형성하여 종자번식을 하는 타가수분방식과 분지하여 새로운 개체를 형성하는 영양번식을 영위할 수 있는 다양한 번식법을 가지고 있는 클론 식물의 특성에 기인한 것으로 사료된다. 따라서 같은 집단에서 다양한 세대의 존재하여 내교잡(inbreeding)이 발생한 것으로 볼 수 있다.

The genetic diversity and population structure of Potentilla freyniana in Korea were determined using genetic variations at 19 allozyme loci. Thirteen of the 19 loci (68.4%) showed detectable polymorphism. Genetic diversity at the population level was high ($H_{EP}$ = 0.270). Total genetic diversity values ($H_T$) varied between 0.190 and 0.584, giving an average overall polymorphic loci of 0.371. The interlocus variation of genetic diversity within populations ($H_S$) was high (0.354). On a per locus basis, the proportion of total genetic variation due to differences among populations ($G_{ST}$) ranged from 0.008 for Fe-2 to 0.310 for Gpi with a mean of 0.065, indicating that about 6.5% of the total allozyme variation was among populations. Wide geographic ranges, perennial herbaceous nature and the persistence of multiple generations are associated with the high level of genetic variation in P. freyniana. The estimate of gene flow based on $G_{ST}$, was high among Korean populations of P. freyniana (Nm =3.57). Although P. freyniana usually propagated by asexually-produced ramets, I could not rule out the possibility that sexual reproduction occurred at a low rate because each ramet may produce terminal flowers.

키워드

참고문헌

  1. Bayer, R. J. 1990. Patterns of clonal diversity in the Antennaria rosea (Asteraceae) polyploid agamic complex. Am. J. Bot. 77, 1313-1319 https://doi.org/10.2307/2444591
  2. Charlesworth, D. and B. Charlesworth. 1987. Inbreeding depression and its evolutionary consequences. Ann. Rev. Eco. Syst. 18, 237-268 https://doi.org/10.1146/annurev.es.18.110187.001321
  3. Clegg, M. T. 1980. Measuring plant mating systems. BioScience 30, 814-818 https://doi.org/10.2307/1308373
  4. Cook, R. E. 1983. Clonal plant populations. Am. Sci. 71, 244-253
  5. Ellstrand, N. C. and M. L. Roose. 1987. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74, 123-131 https://doi.org/10.2307/2444338
  6. Eriksen, B. 1997. Morphometric analysis of Alaskan members of the genus Poteniilla sect. Niveae (Rosaceae). Nordic J. Bot. 17, 621-630 https://doi.org/10.1111/j.1756-1051.1997.tb00358.x
  7. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. of Washington, Seattle
  8. Hamrick, J. L., M. J. W. Godt and S. L. Sherman-Broyles, 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124 https://doi.org/10.1007/BF00120641
  9. Hartnett, D. C. and F. A. Bazzaz. 1985. The regulation of leaf, ramet and gene densities in experimental populations of the rizomatous perennial Solidago canadensis. J. Ecol. 73, 429-443 https://doi.org/10.2307/2260485
  10. Heywood, J. C. 1991. Spatial analysis of genetic variation in plant populations. Ann. Rew. Eco. Syst. 22, 335-355 https://doi.org/10.1146/annurev.es.22.110191.002003
  11. Heywood, J. C. 1993. Biparental inbreeding depression in the self-incompatible annual plant Gaillardia pulchella (Asteraceae). Am. J. Bot. 80, 545-550 https://doi.org/10.2307/2445370
  12. Holsinger, K. E. 1991. Mass-action models of plant mating systems, the evolutionary stability of mixed mating systems. Am. Nat. 138, 606-622 https://doi.org/10.1086/285237
  13. Huh, M. K. 2001. Allozyme variation and population structure of Carex humilis var. nana (Cyperaceae) in Korea. Can. J. Bot. 79, 457-463 https://doi.org/10.1139/cjb-79-4-457
  14. Lee, Y. N. 1997. Flora of Korea. Kyo-Hak Publishing Co, Seoul, Korea
  15. Li, C. C. and D. G. Horvitz. 1953. Some methods of estimating the inbreeding coefficient. Am. J. Hum. Genet. 5, 107-117
  16. Maki, M. 1993. Outcrossing and fecundity advantage of females in gynodiecious Chiongraphis japonica var. eurohimensis (Liliaceae). Am. J. Bot. 80, 629-634 https://doi.org/10.2307/2445432
  17. Nei, M., T. Murawama and R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29, 1-10 https://doi.org/10.2307/2407137
  18. Sobey, D. G. and P. Barkhouse. 1977. The structure and rate growth of the rhizome of some forest herbs and dwarf herbs of the New Brunswick-Nova Scotia border region. Can. Field-Nat. 91, 377-383
  19. Soltis, D. E., H. HauBer, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns, A complication of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27 https://doi.org/10.2307/1546611
  20. Spommer, G. G. 1999. Evidence of protocarnivorous capabilities in Geranium oiscosiseimum and Poteniilla arguta and other sticky plants. Int. J. Plant Sci. 160, 98-101 https://doi.org/10.1086/314109
  21. Uyenoyama, M. K. 1986. Inbreeding and the cost of meiosis, the evolution of selfing in population practicing biparental inbreeding. Evolution 40, 388-404 https://doi.org/10.2307/2408817
  22. Weeden, N. F. and J. F. Wendel. 1989. Genetics of Plant Isozvmes, pp. 42-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland
  23. Wright, S. 1922. Coefficients of inbreeding and relationship. Am. Nat. 56, 330-338 https://doi.org/10.1086/279872
  24. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420 https://doi.org/10.2307/2406450