더덕과 일부 한약재 열수추출물의 혼합 비율에 따른 생리활성

Physiological Functionalities of Hot Water Extract of Codonopsis lanceolata and Some Medicinal Materials, and Their Mixtures

  • 발행 : 2007.09.29

초록

The aim of this study was to investigate the physiological functionalities of Codonopsis lanceolata, Glycyrrhiza uralensis, Chaenomeles sinensis, Crataegus pinnafida, and their mixtures. We also determined their antioxidative, fibrinolytic, and ${\alpha}-glucosidase$ inhibitory activities. The antioxidative activities of Codonopsis lanceolata, Glycyrrhiza uralensis, Chaenomeles sinensis, and Crataegus pinnafida were 79%, 88.3%, 89.9%, and 89.3% respectively. Their fibrinolytic activities were 0.80plasmin unit/mi, 0.57 plasmin unit/mi, 0.52 plasmin unit/mi, and 0.53 plasmin unit/mi respectively. The ${\alpha}-glucosidase$ inhibitory activity of Codonopsis lanceolata was 25%. The 10-fold diluents of Glycyrrhiza uralensis, Chaenomeles sinensis, and Crataegus pinnafida showed ${\alpha}-glucosidase$ inhibitory activities of 93.6%, 65.3%, and 61.3% respectively. In antioxidative activity tests of the medicinal plants mixtures at various ratios, the mixtures of Glycyrrhiza uralensis, Chaenomeles sinensis, and Crataegus pinnafida with Codonopsis lanceolata showed antioxidative activities of approximately 90%. In fibrinolytic activity tests mixtures(1:1) of Codonopsis lanceolata with Chaenomeles sinensis and Crataegus pinnafida exhibited increases of 23% and 24% in activity respectively. In ${\alpha}-glucosidase$ inhibitory activity tests, a mixture (4:1) of Codonopsis lanceolata and 10-fold diluted Glycyrrhiza uralensis showed an inhibitory activity of 98%, a mixture (3:1) of Codonopsis lanceolata and 10-fold diluted Chaenomeles sinensis showed an inhibitory activity of 69.6%, and a mixture (1:1) of Codonopsis lanceolata and 10-fold diluted Crataegus pinnafida showed an inhibitory activity of 50.2%. In conclusion, the mixtures of Glycyrrhiza uralensis, Chaenomeles sinensis, and Crataegus pinnafida with Codonopsis lanceolata will be used as a material for the development of biofunctional foods.

키워드