Comparison of Efficacy of New Bone Formation According to Implant Treatment in Xenograft Transplanted for Experimental Bone Defects of Rabbits

토끼 실험적 골 결손부에 이식한 이종 이식골편의 처리방법에 따른 신생골 형성능력 비교

  • Song, Ha-Na (Seosin Animal Hospital) ;
  • Lee, Jong-Il (Graudate School of Agricultural and Life Sciences, The University of Tokyo)
  • 송하나 (전주 서신동물병원) ;
  • 이종일 (동경대학교 농학생명과학대학원)
  • Published : 2007.09.30

Abstract

Bone graft had been widely investigated for reconstruction of bone defects or acceleration of bone healing in orthopedics, neurosurgery and dental surgery. Autograft is the golden standard of bone graft but it is associated with donor site morbidity and is restricted in quantity. Xenograft has been researched an alternative method for autograft. The purpose of this study was to investigate the efficacy of new bone formation according to three different preparations of implants on rabbit xenograft. Cortical bone xenografts which made from bovine femoral cortical bone were treated by freezing, freeze-drying or defat-freezing implant preparations. They were transplanted into proximal diaphyseal shaft of bifibulae of 15 rabbits which were divided into three groups according to their implant preparation method. The fibulae transplantations were evaluated radiographically and examined osteoblast activity by bone alkaline phosphatase (BALP) biweekly for 16 weeks to observe new bone formation and union of the experimental defected region. New bone formation was observed in 7 cases in freeze-drying and defat-freezing group, respectively. Union of proximal and distal end of defected region, which was considered as success of bone graft, was observed in 4 cases (40%; 4 of 10 cases), respectively. In freezing group, new bone formation was observed in 6 cases but, there is no union observed. BALP value was increased over twice after two weeks of graft procedure in all union cases of freeze-drying and defat-freezing group (two of five animals, respectively) then gradually decreased to 16th week. In non-union cases, there is no significant variation in BALP value. Defat-freezing or freeze-drying preparations of implants are more efficacious in new bone formation than freezing method on rabbit xenograft. While it is difficult to propose which is superior between defat-freezing and freeze-drying, defatting of implants may enhance new bone formation in xenograft.

Keywords

References

  1. Allen LC, Allen MJ, Breur GJ, Hoffmann WE, Richardson DC. A comparison of two techniques for the determination of serum bone-specific alkaline phosphatase activity in dogs. Res Vet Sci 2000; 68: 231-235 https://doi.org/10.1053/rvsc.1999.0369
  2. Amillo S, Gonzalez F, Illescas JA. Incorporation of cortical intercalary bone allografts. Experimental study on rabbits (article is Spanish). An Sist Sanit Navar 2003; 26: 357-363
  3. Aspenberg P, Thoren K. Lipid extraction enhances bank bone incorporation. An experiment in rabbits. Acta Orthop Scand 1990; 61: 546-548 https://doi.org/10.3109/17453679008993579
  4. Barrack RL. Bone graft extenders, substitutes, and osteogenic proteins. J Arthroplasty 2005; 20: 94-97
  5. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 2000; 371: 10-27 https://doi.org/10.1097/00003086-200002000-00003
  6. Behr W, Barnert J. Quantification of bone alkaline phosphatase in serum by precipitation with wheat-genn lectin: a simplified method and its clinical plausibility. Clin Chern 1986; 32: 1960-1966
  7. Bolano L, Kopta JA. The immunology of bone and cartilage transplantation. Orthopedics 1991; 14: 987-996
  8. Bos GD, Goldberg VM, Zika JM, Heiple KG, Powell AE. Immune responses of rats to frozen bone allografts. J Bone Joint Surg Am 1983; 65: 239-246 https://doi.org/10.2106/00004623-198365020-00015
  9. Burchardt H. Biology of bone transplantation. Orthop Clin North Am 1987; 18: 187-196
  10. Cohen RE, Mullarky RH, Noble B, Comeau RL, Neiders ME. Phenotypic characterization of mononuclear cells following anorganic bovine bone implantation in rats. J Periodontol 1994; 65: 1008-1015 https://doi.org/10.1902/jop.1994.65.11.1008
  11. Conrad EU, Ericksen DP, Tencer AF, Strong DM, Mackenzie AP. The effects of freeze-drying and rehydration on cancellous bone. Clin Orthop Relat Res 1993: 279-284
  12. DePaula CA, Truncale KG, Gertzman AA, Sunwoo MH, Dunn MG. Effects of hydrogen peroxide cleaning procedures on bone graft osteoinductivity and mechanical properties. Cell Tissue Bank 2005; 6: 287-298 https://doi.org/10.1007/s10561-005-3148-2
  13. Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res 2000: 38-45
  14. Finkemeier CG.. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 2002; 84-A: 454-464
  15. Friedlaender GE, Strong DM, Sell KW. Studies on the antigenicity of bone. I. Freeze-dried and deep-frozen bone allografts in rabbits. J Bone Joint Surg Am 1976; 58: 854-858 https://doi.org/10.2106/00004623-197658060-00018
  16. Fukunaga T, Masumi S, Yano H, Ikebe S, Shimizu K. Osteogenesis in xenogeneic bone transplantation, using an immunosuppressant. Rabbit-rat experiments. Acta Orthop Scand 1995; 66: 557-560 https://doi.org/10.3109/17453679509002315
  17. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36 Suppl 3: S20-27
  18. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 2001; 83-A Suppl 2 Pt 2: 98-103
  19. Habal MB. Different forms of bone grafts. In: Bone Graft & Bone Substitutes ed. Saunders, Philadelphia: Habal Mutaz. B., Reddi A. Hari. 1992: 6-8
  20. Hatano N, Shimizu Y, Ooya K. A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2 : I autogenous bone/xenograft mixture and simultaneous placement of dental implants. Clin Oral Implants Res 2004; 15: 339-345 https://doi.org/10.1111/j.1600-0501.2004.00996.x
  21. Heliotis M, Tsiridis EE. Fresh frozen bone in femoral impaction grafting: can developments in bone regeneration improve on this? Med Hypotheses 2001; 57: 675-678 https://doi.org/10.1054/mehy.2001.1376
  22. Heyligers IC, Klein-Nulend J. Detection of living cells in nonprocessed but deep-frozen bone allografts. Cell Tissue Bank 2005; 6: 25-31 https://doi.org/10.1007/s10561-005-1089-4
  23. Hierholzer C, Sarna D, Toro JB, Peterson M, Helfet DL. Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 2006; 88: 1442-1447 https://doi.org/10.2106/JBJS.E.00332
  24. Homicek FJ, Zych GA, Hutson JJ, Malinin TI. Salvage of humeral nonunions with onlay bone plate allograft augmentation. Clin Orthop Relat Res 2001: 203-209
  25. Hubble MJW. Bone transplantation. Current Orthopaedics 2001; 15: 199-205 https://doi.org/10.1054/cuor.2001.0179
  26. Johnson AL. Principles ofbone grafting. Semin Vet Med Surg (Small Anim) 1991; 6: 90-99
  27. Jones KC, Andrish J, Kuivila T, Gurd A. Radiographic outcomes using freeze-dried cancellous allograft bone for posterior spinal fusion in pediatric idiopathic scoliosis. J Pediatr Orthop 2002; 22: 285-289 https://doi.org/10.1097/00004694-200205000-00003
  28. Kraus KH, Kirker-Head C. Mesenchymal stem cells and bone regeneration. Vet Surg 2006; 35: 232-242 https://doi.org/10.1111/j.1532-950X.2006.00142.x
  29. Myerson MS, Neufeld SK, Uribe J. Fresh-frozen structural allografts in the foot and ankle. J Bone Joint Surg Am 2005; 87: 113-120
  30. Periyn CA, Schmelzer R, Govier O, Marsh JL. Congenital scalp and calvarial deficiencies: principles for classification and surgical management. Plast Reconstr Surg 2005; 115: 1129-1141 https://doi.org/10.1097/01.PRS.0000156217.33683.2B
  31. Reddi AH, Wientroub S, Muthukumaran N. Biologic principles of bone induction. Orthop Clin North Am 1987; 18: 207-212
  32. Sammarco VJ, Chang L. Modem issues in bone graft substitutes and advances in bone tissue technology. Foot Ankle Clin 2002; 7: 19-41 https://doi.org/10.1016/S1083-7515(01)00003-1
  33. Schena CJ, Mitten RW, Hoefle WD. Segmental freeze-dried and fresh cortical allografts in the canine femur I A sequential radiographic comparison over a one-year time interval. J Am Anim Hosp Assoc 1984; 20: 911-925
  34. Sculean A, Chiantella GC, Windisch P, Arweiler NB, Brecx M, Gera I. Healing of intra-bony defects following treatment with a composite bovine-derived xenograft (Bio-Oss Collagen) in combination with a collagen membrane (Bio-Gide PERlO). J Clin Periodontol 2005; 32: 720-724 https://doi.org/10.1111/j.1600-051X.2005.00758.x
  35. Thoren K, Aspenberg P, Thorngren KG. Lipid extracted bank bone. Bone conductive and mechanical properties. Clin Orthop Relat Res 1995: 232-246
  36. Thoren K, Aspenberg P, Thorngren KG. Lipid extraction decreases the specific immunologic response to bone allografts in rabbits. Acta Orthop Scand 1993; 64: 44-46 https://doi.org/10.3109/17453679308994526
  37. Trentz OA, Hoerstrup SP, Sun LK, Bestmann L, Platz A, Trentz OL. Osteoblasts response to allogenic and xenogenic solvent dehydrated cancellous bone in vitro. Biomaterials 2003; 24: 3417-3426 https://doi.org/10.1016/S0142-9612(03)00205-9
  38. Turner CH. Bone strength: current concepts. Ann N Y Acad Sci 2006; 1068: 429-446 https://doi.org/10.1196/annals.1346.039
  39. Urist MR. Bone: formation by autoinduction. 1965. Clin Orthop Relat Res 2002: 4-10
  40. VandeVord PJ, Nasser S, Wooley PH. Immunological responses to bone soluble proteins in recipients of bone allografts. J Orthop Res 2005; 23: 1059-1064 https://doi.org/10.1016/j.orthres.2004.12.004
  41. Wang JM, Oh JK, Kim DJ. Effect of the pedicle screw fixation on the anterior lumbar interbody fusion using the freeze-dried structural allograft. J Kor Orthop Assoc 1998; 33: 1569-1576
  42. Worth A, Mucalo M, Horne G, Bruce W, Burbidge H. The evaluation of processed cancellous bovine bone as a bone graft substitute. Clin Oral Implants Res 2005; 16: 379-386 https://doi.org/10.1111/j.1600-0501.2005.01113.x
  43. Zunino JH, Bengochea M, Johnston J, Deneo H, Hernandez S, Servetto C, Taranto L, Ordoqui G Immunologic and osteogeneic properties of xenogeneic and allogeneic demineralized bone transplants. Cell Tissue Bank 2004; 5: 141-148 https://doi.org/10.1023/B:CATB.0000046070.32132.34
  44. 강지연, 김경원, 이은영, 최희원 골이식 공여부에 발생한 장골골절의 해부학적 고찰. 대한악안면성형재건외과학회지 2004; 26: 75-80
  45. 김영조, 엄인웅, 이동근, 김수남. 냉동건조 탈회골편의 치 유과정에 관한 조직학적 연구. 대한구강악안변외과학회지 1993; 19: 79-87
  46. 문명상, 우영균, 선두훈. 토끼의 장관골 결손부에 삽입된 탈회한 동종골 및 이종골의 골생성능. 대한정형외과학회지 1991; 26: 1281-1288
  47. 박상원, 강오용, 정대철, 위대곤. 이종골 이식이 가토 장관 골 결손부의 치유과정에 미치는 영향에 관한 실험적 연구. 대한정형외과학회지 1997; 32: 449-456
  48. 이동근. 동종골의 처리방법에 따른 골치유 능력에 관한 실험적 연구. 대한구강악안면외과학회지 1997; 23: 43-62
  49. 장익열. 동결건조골에 대한 소고 대한정형외과학회지 1988; 23: 929-935
  50. 조용석 , 김경원 백서 두개골에의 이종골 이식 후 치유에 관한 실험적 연구. 대한악안변성형재건외과학회지 1999; 21: 13-22
  51. 최인혁, 이종일. 동결건조한 산양뼈의 개이식 효과. 한국임상수의학회지 1998; 15: 442-449
  52. 최인혁, 김현경, 김남수, 佐木伸雄. 개의 비유합 골절 Model에 있어서 동결건조골이식의 효과. 대한수의학회지 1996; 36: 495-512