앞십자인대 및 내측 곁인대 절제와 내측 반월판 절제술을 한 뒤 수술후 운동을 실시하지 않은 개의 무릎 관절의 평가

Evaluation of the Canine Stifle Joint after Transection of the Cranial Cruciate Ligament and Medial Collateral Ligament, and Medial Meniscectomy without Postoperative Exercise

  • Lee, Hae-Beom (College of Veterinary Medicine, Chonbuk National University) ;
  • Jeong, Chang-Woo (College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Nam-Soo (College of Veterinary Medicine, Chonbuk National University)
  • 발행 : 2007.09.30

초록

본 연구는 개에서 수술적으로 짧은 기간 동안 관절의 불안정성을 최대로 유도하여 수술후 운동 없이 관절의 퇴행성 변화의 유무 및 정도와 골관절염 모델로 적합한지를 평가 하였다. 10두의 비글견을 본 실험에 사용하였다. 실험군은 오른쪽 무릎관절의 앞십자인대 및 내측 곁인대의 절제와 내측 반월 연골 절제술을 시행하였으며, 왼쪽 무릎관절을 대조군으로 사용하였다. 수술 12주 후 연골의 손상, 윤활막의 염증 정도와 윤활액의 생화학적 변화를 평가 하였다. 조직 검사에서 연골의 비후, 연골 세포의 분화, 프로테오글리칸의 소실 및 윤활막의 염증이 대조군과 비교하여 유의성 있는 증가가 관찰되었다. 윤활액의 생화학적 검사에서 유의성 있게 증가된 MMP-2, -9의 농도를 실험군에서 관찰 하였다. 이상의 결과로부터 본 연구에 수행한 관절염 모델은 골관절염 유도가 가능하며, 술후 운동으로 소모되는 시간 및 비용을 줄 일수 있는 장점 있어 골관절염 모델로서 유용하게 활용될 것으로 판단된다.

This study was to determine whether canine model which produce acute permanent joint instability in short period without postoperative exercise have a degenerative changes and also evaluated its suitability as an appropriate animal OA models. Ten skeletally mature beagle dogs underwent a unilateral surgical transection of the cranial cruciate ligament and, the medial collateral ligament as well as a medial meniscectomy. The contra-lateral joint was used as control. After 12 weeks, After 12 weeks, the amount of joint damage, inflammation and biochemical change of synovial fluid was evaluated. Histological analysis showed chondrocyte clone formation, hypertrophy of the cartilage and moderate loss of proteoglycans in the experimental joints compared to control joints. In addition, the synovial inflammation in the experimental joints was observed. Biochemical analysis of SF showed significantly increased MMP (matrix metalloproteinase) -2 and -9 in experimental joints compared to control joints. This canine OA model shows the characteristics of degenerative joint disease, and may have a advantages of reducing the time and cost because postoperative exercise is not needed in this OA model.

키워드

참고문헌

  1. Adams ME, Brandt KD. Hypertrophic repair of canine articular cartilage in osteoarthritis after anterior cruciate ligament transection. J Rheumatol 1991; 18(3): 428-435
  2. Altman RD, Tenenbaum J, Latta L, Riskin W, Blanco LN, Howell DS. Biomechanical and biochemical properties of dog cartilage in experimentally induced osteoarthritis. Ann Rheum Dis 1984; 43(1): 83-90 https://doi.org/10.1136/ard.43.1.83
  3. Bendele A, McComb J, Gould T, McAbee T, Sennello G, Chlipala E, Guy M. Animal models of arthritis: relevance to human disease. Toxicol Pathol 1999; 27(1): 134-142 https://doi.org/10.1177/019262339902700125
  4. Brandt KD, Myers SL, Burr D, Albrecht M. Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament Arthritis Rheum 1991; 34(12): 1560-1570 https://doi.org/10.1002/art.1780341214
  5. Dray A, Read SJ. Arthritis and pain. Future targets to control osteoarthritis pain. Arthritis Res Ther 2007; 9(3): 212 https://doi.org/10.1186/ar2178
  6. Fiorito S, Magrini L, Adrey J, Mailhe D, Brouty-Boye D. Inflammatory status and cartilage regenerative potential of synovial fibroblasts from patients with osteoarthritis and chondropathy. Rheumatology (Oxford) 2005; 44(2): 164-171 https://doi.org/10.1093/rheumatology/keh431
  7. Goldenberg DL, Cohen AS. Synovial membrane histopathology in the differential diagnosis of rheumatoid arthritis, gout, pseudogout, systemic lupus erythematosus, infectious arthritis and degenerative joint disease. Medicine (Baltimore) 1978; 57(3): 239-252 https://doi.org/10.1097/00005792-197805000-00004
  8. Gordon WJ, Conzemius MG, Riedesel E, Besancon MF, Evans R, Wilke V, Ritter MJ. The relationship between limb function and radiographic osteoarthrosis in dogs with stifle osteoarthrosis. Vet Surg 2003; 32(5): 451-454 https://doi.org/10.1053/jvet.2003.50051
  9. Guo X, Wang C, Zhang Y, Xia R, Hu M, Duan C, Zhao Q, Dong L, Lu J, Qing Song Y: Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 2004;10(11-12): 1818-1829 https://doi.org/10.1089/ten.2004.10.1818
  10. Kannan K, Ortmann RA, Kimpel D: Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 2005; 12(3): 167-181 https://doi.org/10.1016/j.pathophys.2005.07.011
  11. Kanyama M, Kuboki T, Kojima S, Fujisawa T, Hattori T, Takigawa M, Yamashita A: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids of patients with temporomandibular joint osteoarthritis. J Orofac Pain 2000; 14(1): 20-30
  12. Lindhorst E, Vail TP, Guilak F, Wang H, Setton LA, Vilim V, Kraus VB. Longitudinal characterization of synovial fluid biomarkers in the canine meniscectomy model of osteoarthritis. J Orthop Res 2000;18(2): 269-280 https://doi.org/10.1002/jor.1100180216
  13. Little C, Smith S, Ghosh P, Bellenger C: Histomorphological and immunohistochemical evaluation of joint changes in a model of osteoarthritis induced by lateral meniscectomy in sheep. J Rheumatol 1997; 24(11): 2199-2209
  14. Mandelbaum B, Waddell D: Etiology and pathophysiology of osteoarthritis. Orthopedics 2005; 28(2 Suppl): s207-214
  15. Mankin HJ, Dorfinan H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 1971; 53(3): 523-537 https://doi.org/10.2106/00004623-197153030-00009
  16. Marijnissen AC, van Roermund PM, TeKoppele JM, Bijlsma JW, Lafeber FP. The canine 'groove' model, compared with the ACLT model of osteoarthritis. Osteoarthritis Cartilage 2002; 10(2): 145-155 https://doi.org/10.1053/joca.2001.0491
  17. Marijnissen AC, van Roermund PM, Verzijl N, Tekoppele JM, Bijlsma JW, Lafeber FP: Steady progression of osteoarthritic features in the canine groove model. Osteoarthritis Cartilage 2002;10(4): 282-289 https://doi.org/10.1053/joca.2001.0507
  18. Masuhara K, Bak Lee S, Nakai T, Sugano N, Ochi T, Sasaguri Y. Matrix metalloproteinases in patients with osteoarthritis of the hip. Int Orthop 2000; 24(2): 92-96 https://doi.org/10.1007/s002640000110
  19. Myers SL, Brandt KD, O'Connor BL, Visco DM, Albrecht ME. Synovitis and osteoarthritic changes in canine articular cartilage after anterior cruciate ligament transection. Effect of surgical hemostasis. Arthritis Rheum 1990; 33(9): 1406-1415
  20. Naito K, Takahashi M, Kushida K, Suzuki M, Ohishi T, Miura M, Inoue T, Nagano A. Measurement of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-l (TIMP-1) in patients with knee osteoarthritis: comparison with generalized osteoarthritis. Rheumatology (Oxford) 1999; 38(6): 510-515 https://doi.org/10.1093/rheumatology/38.6.510
  21. Sinkov V, Cymet T: Osteoarthritis. understanding the pathophysiology, genetics, and treatments. J Natl Med Assoc 2003; 95(6): 475-482
  22. Smith GN, Mickler EA, Albrecht ME, Myers SL, Brandt KD. Severity of medial meniscus damage in the canine knee after anterior cruciate ligament transection. Osteoarthritis Cartilage 2002; 10(4): 321-326 https://doi.org/10.1053/joca.2002.0520
  23. Woo SL, Young EP, Ohland KJ, Marcin JP, Horibe S, Lin HC. The effects of transection of the anterior cruciate ligament on healing of the medial collateral ligament. A biomechanical study of the knee in dogs. J Bone Joint Surg Am 1990; 72(3): 382-392 https://doi.org/10.2106/00004623-199072030-00010