참고문헌
- Benfield EF, Webster JR. 1985. Shredder abundance and leaf breakdown rates in streams. Freshw Biol 15: 113-120 https://doi.org/10.1111/j.1365-2427.1985.tb00701.x
- Brinson MM, Lugo AE, Brown S. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Ann Rev Ecol Syst 12: 123-161 https://doi.org/10.1146/annurev.es.12.110181.001011
- Brock TCM. 1984. Aspects of the decomposition of Nymphoides peltata (Cmel.) O. Kuntze (Menyanthaceae). Aquat Bot 19: 131-156 https://doi.org/10.1016/0304-3770(84)90013-5
- Carpenter SR. 1980. Enrichment of Lake Wingra, Wisconsin, by submersed macrophyte Ceratophyllum demersum L. in mesotrophic Lake Vechten in relation to insolation, temperature and reserve carbohydrates. Hydrobiologia 148: 231-243 https://doi.org/10.1007/BF00017526
- Carpenter SR, Lodge DM. 1986. Effects of submersed macrophytes on ecosystem processes. Aquat Bot 11: 173-186 https://doi.org/10.1016/0304-3770(81)90058-9
- Chimney MJ, Pietro KC. 2006. Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA). Ecol Eng 27: 301-321 https://doi.org/10.1016/j.ecoleng.2006.05.016
- Cho KH. 1992. Matter production and cycles of nitrogen and phosphorus by aquatic macrophytes in Lake Paltangho (PhD dissertation). Seoul National University, Seoul. (in Korean)
- Denward CMT, Tranvik LJ. 1998. Effects of solar radiation on aquatic macrophyte litter decomposition. Oikos 82: 51-58 https://doi.org/10.2307/3546916
- Gessner MO. 2000. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake. Aquat Bot 66: 9-20 https://doi.org/10.1016/S0304-3770(99)00022-4
- Gessner MO, Chauvet E. 1994. Importance of stream microfungi in controlling breakdown rates of litter. Ecology 75:1807-1817 https://doi.org/10.2307/1939639
- Helrich K. 1990. Official methods of analysis fo the association of official analytical chemists. AOAC Inc USA
- Iversen TM. 1975. Disappearance of autumn shed leaves placed in bags in small streams. Arch Hydrobiol 68: 465-515
- Kim BY, Kim KS, Park YD. 1988. Studies on the nutrient removal potential of selected aquatic plants in the pig waste water. Korean J Environ Agric 7: 111-116. (in Korean)
- Kim GY, Joo GJ, Kim HW, Shin GS, Yoon HS. 2002. Leaf litter breakdown of emergent macrophytes by aquatic invertebrates in the lower Nakdong River. Korean J Limnol 35: 172-180. (in Korean)
- Kuehn KA, Suberkropp K. 1998. Decomposition of standing litter of the freshwater emergent macrophyte Juncus effusus. Freshw Biol 40: 717-727 https://doi.org/10.1046/j.1365-2427.1998.00374.x
- Lee KW, Kim MK, Ahn CY, Sim WK. 2002. Characteristics of vegetation distribution with water depth and crossing slope at the shoreline of reservoir Paldang. J Korean Env Res Reveg Tech 5 (2): 1-8
- Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621-626 https://doi.org/10.2307/1936780
- Melillo JM, Naiman RJ, Aber JD, Linkins AE. 1984. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. B Mar Sci 35: 341-356
- Mun HT, Namgung J, Kim JH. 2000a. Mass loss and changes of nutrients during the decomposition of Typha angustata. Korean J Environ Biol 18(1): 105-111. (in Korean)
- Mun HT, Namgung J, Kim JH. 2000b. Mass loss and changes of nutrients during decomposition of Phragmites communis at the fringe of stream. Korean J Ecol 23: 157-161
- Mun HT, Namgung J, Kim JH. 2001. Decay rate and changes of nutrients during the decomposition of Zizania latifolia. Korean J Ecol 23: 157-161
- Polunin NVC. 1984. The decomposition of emergent macrophytes in fresh water. Adv Ecol Res 14: 115-173 https://doi.org/10.1016/S0065-2504(08)60170-1
- Richardson CJ, Marshall PE. 1986. Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecol Monogr 56: 279-302 https://doi.org/10.2307/1942548
- Royer TV, Minshall GW. 2001. Effect of nutrient enrichment and leaf quality on the breakdown of leaves in a hardwater stream. Freshw Biol 46: 603-610 https://doi.org/10.1046/j.1365-2427.2001.00694.x
- Shin JH, Choi SK, Yeon MH, Kim JM, Shim JK. 2006. Early stage decomposition of emergent macrophytes. J Ecol Field Biol 29(6): 565-572. (in Korean) https://doi.org/10.5141/JEFB.2006.29.6.565
- Shin JY, Park SS. 2001. A Study on an estimation of the nutrinet removal potential of aquatic plants in natural streams. J KSWQ 17(2): 201-213
- Suberkropp K. 1995. Regulation of leaf breakdown by fungi in streams: influence of water chemistry. Ecology 76(5): 1433-1445 https://doi.org/10.2307/1938146
- Swift MJ, Heal OW, Anderson JM. 1979. Decomposition in terrestrial ecosystems. Studies in Ecology, Vol 5. Univ of California Press, Berkley & Los Angeles
- Welsch M, Yavitt JB. 2003. Early stages of decay of Lythrum salicaria L. and Typha latifolia L. in a standing-dead position. Aquat Bot 75: 45-57 https://doi.org/10.1016/S0304-3770(02)00164-X
- Wetzel RG, Howe MJ. 1999. High production in a herbaceous perennial plant achieved by continuous growth and synchronized population dynamics. Aquat Bot 64: 111-129 https://doi.org/10.1016/S0304-3770(99)00013-3
- Wrubleski DA, Murkin HR, van der Valk AG, Nelson JW. 1997. Decomposition of emergent macrophyte roots and rhizomes in a nothern prairie marsh. Aquat Bot 58: 121-134 https://doi.org/10.1016/S0304-3770(97)00016-8
- Yang KC, Shim JK. 2003. The decomposition of leaf litters of some tree species in temperate deciduous forest in Korea. II. Changes in nutrient content during litter decomposition. Korean J Ecol 26: 313-319 https://doi.org/10.5141/JEFB.2003.26.6.313