Effect of Recrystallized PLGA on Release Behavior of 5-Fluorouracil

재결정화된 PLGA의 특성에 따른 5-FU 웨이퍼의 방출거동

  • Park, Jung-Soo (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Lee, Joon-Hee (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Choi, Myung-Gyu (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Rhee, John-M. (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Kim, Moon-Suk (Nanobiomaterials Lab, Korea Research Institute of Chemical Technology) ;
  • Lee, Hai-Bang (Nanobiomaterials Lab, Korea Research Institute of Chemical Technology) ;
  • Khang, Gil-Son (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University)
  • 박정수 (BK-21 고분자 BIN 융합 연구팀) ;
  • 이준희 (BK-21 고분자 BIN 융합 연구팀) ;
  • 최명규 (BK-21 고분자 BIN 융합 연구팀) ;
  • 이종문 (BK-21 고분자 BIN 융합 연구팀) ;
  • 김문석 (한국화학연구원 생체분자전달제어팀) ;
  • 이해방 (한국화학연구원 생체분자전달제어팀) ;
  • 강길선 (BK-21 고분자 BIN 융합 연구팀)
  • Published : 2007.09.30

Abstract

In this study, we fabricated recrystallized PLGA (rPLGA) particles using the vacuum drying method. In order to investigate an applicability of the rPLGA particles for controlled release system of 5-fluorouracil (5-FU) loaded PLGA wafer, we prepared three different wafers using; 1) untreated PLGA (uPLGA), 2) rPLGA, and 3) uPLGA and rPLGA (4 : 1, 1 : 1 or 1 : 4). The rPLGA particles were characterized using NMR, IR and GPC to compare with uPLGA particles. The surface and cross section morphology of the prepared wafers were observed by the scanning electron microscope. The release profile of the 5-FU loaded wafer was measured by HPLC. The 5-FU/rPLGA wafer released the incorporated 5-FU in a sustained manner with low initial burst compared to 5-FU/uPLGA. These results showed that the ratio of pure PLGA/recrystallized PLGA can affect the release behaviors.

본 연구에서는 재결정 PLGA 분말을 진공 건조 방법을 사용하여 제조하였다. 5-FU가 함유된 PLGA 웨이퍼를 이용한 조절된 방출을 위하여 재결정 PLGA 분말의 응용성을 연구하기 위하여 세 종류의 웨이퍼를 제조하였다; 1) 순수한 PLGA, 2) 재결정 PLGA, 및 3) 순수한PLGA와 재결정 PLGA의 혼합(4 : 1, 1 : 1 및 1 : 4). 순수한 PLGA와 재결정 PLGA 분말은 NMR, IR과 GPC를 이용하여 비교 분석하였다. 주사전자현미경을 이용하여 제조한 웨이퍼 의 표면과 단면의 형태학적 차이를 관찰하였다. 웨이퍼로부터 방출된 5-FU의 방출거동은 HPLC를 이용하여 측정하였다. 5-FU/재결정 PLGA 웨이퍼는 5-FU/순수한 PLGA 웨이퍼에 비교하여 낮은 초기 방출과 지속적 방출거동을 갖는 것을 확인하였다. 순수한 PLGA/재결정 PLGA의 비율은 조절된 방출거동을 갖게 할 수 있음을 볼 수 있었다.

Keywords

References

  1. R. E. Harbaugh, R. L. Sanders, and R. F. Reeder, Neurosurgery, 23, 693 (1988) https://doi.org/10.1227/00006123-198812000-00001
  2. U. Bickel, T. Yoshikawa, and W. M. Pardrige, Adv. Drug Deliver. Rev., 10, 205 (1993) https://doi.org/10.1016/0169-409X(93)90048-9
  3. T. M. Allen, W. W. Cheng, J. I. Hare, and K. M. Laginha, Anticancer Angents Med. Chem., 6, 513 (2006) https://doi.org/10.2174/187152006778699121
  4. D. S. Moon, G. Khang, J. S. Lee, and H. B. Lee, Polymer (Korea), 26, 128 (2002)
  5. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science: An introduction to Materials in Medicine, Academic Press, Wiley, 2005
  6. A. Gopferich and J. Tessmar, Adv. Drug Deliver. Rev., 54, 911 (2002) https://doi.org/10.1016/S0169-409X(02)00051-0
  7. T. K. An, J. S. Lee, P. K. Shin, G. Khang, and H. B. Lee, Biomater. Res., 64, 135 (2002)
  8. G. Khang, M. S. Kim, S. H. Cho, I. Lee, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 1, 9 (2004)
  9. W. Y. Jang, S. H. Kim, I. W. Lee, M. S. Kim, J. M. Rhee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 2, 100 (2005)
  10. K. S. Sea, K. D. Hong, H. Hyun, M. S. Kim, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 2, 109 (2005)
  11. J. T. Ko, J. H. Lee, J. M. Kim, M. S. Kim, J. M. Rhee, H. B. Lee, and G. Khang, Tissue Eng. Reg. Med., 3, 158 (2006)
  12. J. C. Cho, G. Khang, H. S. Choi, J. M. Rhe, and H. B. Lee, Polymer(Kores), 24, 728 (2000)
  13. J. S. Lee, J. H. Shin, J. K. Jeong, J. M. Rhee, H. B. Lee, and G. Khang, Polymer(Kores), 27, 9 (2003)
  14. G. Khang, S. W. Kim, J. C. Cho, J. M. Rhee, S. C. Yoon, and H. B. Lee, Bio-Med Mater. Eng., 11, 89 (2001)
  15. J. S. Park. J. T. Ko, J. H. Shin. J. S. Cho, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 201 (2007)
  16. M. Iwata and H. Ueda, Drug. Dev. Int. Pharm., 22, 1161 (1996) https://doi.org/10.3109/03639049609065953
  17. W. G. Lu, Y. Zhang, Q. M. Xiong, Y. C. Bao, and Q. H. Chen, Chin. Pharm. J., 30, 24 (1995)
  18. K. P. Chowdary and K. V. Ramesh, Indian Drugs, 32, 477 (1995)
  19. T. K. An, H. J. Kang, D. S. Moon, J. S. Lee, H. Seong, J. K. Jeong, G. Khang, and H. B. Lee, Polymer(Korea), 26, 670 (2002)
  20. H. Hyun, Y. H. Cho, S. C. Jeong, B. Lee, M. S. Kim, G. Khang, and H. B. Lee, Polymer(Koree), 30, 28 (2006)
  21. M. S. Kim, K. S. Seo, H. Hyun, S. K. Kim, G. Khang, and H. B. Lee, Int. J. Pherm., 304, 165 (2005) https://doi.org/10.1016/j.ijpharm.2005.08.004
  22. X. Sun, Y. Duan, Q. He, J. Lu, and Z. Zhang, Chem. Pharm. Bull., 53, 599 (2005) https://doi.org/10.1248/cpb.53.599
  23. L. Wang, S. Venkatraman, L. H. Gan, and L. Kleiner, J. Biomed Mater. Res. Part B: Appl. Biometer, 72B, 215 (2005) https://doi.org/10.1002/jbm.b.30147
  24. A. J. Domb, C. F. Gallardo, and R. Langer, Macromolecules, 22, 3200 (1989) https://doi.org/10.1021/ma00198a002
  25. A. C. Albertsson and S. Lundmark, J. MacromoL Sci Chem. A, 27, 397 (1990) https://doi.org/10.1080/00222339009349564
  26. H. Tsuji and T. Ishizaka, J. Appl. Polym. Sci, 80. 2281 (2001a) https://doi.org/10.1002/app.1333
  27. H. Tsuji and T. Ishizaka, Mscromol. Bio-sci. I.59 (2001b)
  28. I. Grizzi, H. Garreau, S. Li, and M. Vert. Biomaterials, 16, 305 (1995) https://doi.org/10.1016/0142-9612(95)93258-F
  29. Y. Doi and A. Steinbuchel, Biopolymers, Wiley-VCH Verlag Gmbh Veinheim, vol. 4, pp 154-155 (2001)