Fire-Retardation Properties of Polyurethane Nanocomposite by Filling Inorganic Nano Flame Retardant

폴리우레탄 복합체의 무기난연재료 충전에 의한 난연 특성

  • Son, Bok-Gi (Department of Chemical and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (Department of Chemical and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Goo, Dong-Chul (Dangjin Fire-Station, National Emergency Management)
  • 손복기 (충남대학교 공과대학 바이오응용화학부) ;
  • 황택성 (충남대학교 공과대학 바이오응용화학부) ;
  • 구동철 (소방방재청 당진소방서)
  • Published : 2007.09.30

Abstract

Polyurethane nanocomposites with inorganic nano fillers for the improvement thermal stability were prepared by the urethane reaction. Fire retardation properties of polyurethane nanocomposites were investigated by cone calorimeter and limited oxygen index (LOI). Maximum heat release rate of MMT-PU and $Bi_2O_3-PU$ polyurethane nanocomposites were decreased as 50% than polyurethane matrix and fire retardation properties of $MMT/Bi_2O_3-PU$ nanocomposte had the best improvement. The LOI of polyurethane nanocomposites also were improved as filling fillers in the nanocomposites over 20. The maximum heat release rates of MMT-PU, $Bi_2O_3-PU\;and\;MMT/Bi_2O_3-PU$ polyurethane nanocomposites were 764, 707, $635kW/m^2$, respectively and $MMT/Bi_2O_3-PU$ polyurethane nanocomposite exhibited the highest value of fire-retardant. We confirmed that polyurethane nanocomposites improved the fire retardation properties.

본 연구에서는 무기계 나노 분말을 충전하여 난연성이 우수한 폴리우레탄 나노복합재료를 우레탄 반응에 의해 제조하였다. 또한 나노복합재료의 난연특성을 콘 칼로리미터 분석과 한계산소지수 시험으로 확인하였다. MMT-PU와 $Bi_2O_3-PU$ 나노복합재료의 최대 열 방출속도는 모두 폴리우레탄 매트릭스보다 50% 감소하였으며, $MMT/Bi_2O_3-PU$ 복합재료의 난연 특성이 가장 우수하였다. 또한 한계산소지수도 충전제의 함량에 따라 감소하는 경향을 보였으며, 모두 20 이상이었다. 복합재료의 최대 열 방출속도는 폴리우레탄 매트릭스보다 모두 지연되었으며 최대 열 방출속도는 $Bi_2O_3-PU$, MMT-PU, $MMT/Bi_2O_3-PU$ 순으로 각각 764, 707, $635kW/m^2$ 이었으며, $MMT/Bi_2O_3-PU$ 복합재료의 난연성이 가장 우수하였다. 한편 폴리우레탄 나노복합재료의 연소시 충전제가 충전됨에 따라 $CO_2$ 생성량은 감소하였고 CO 생성량은 증가하였으며 이로부터 본 연구에서 제조한 복합재료의 난연성이 향상된 것을 확인하였다.

Keywords

References

  1. B. K. G. Theng, Formation and Properties of clay-Polymer Composites, Developments in soil sciences, Elsevier, Nev. York, Vol 9, p 362 (1979)
  2. L. Salmen, A. D. Ruvo, J. C. Seferis, and E. B. Stark, Msterisls Science Monographs, Elsevier, Amsterdam (1986)
  3. J. Bujdak, E. Hackett, and E. P. Giannelis, Chem. Mater., 12, 2168 (2000) https://doi.org/10.1021/cm990677p
  4. S. J. Park, D. I. Seo, and C. Nah, J. Colloid Interface Sci., 251, 225 (2002) https://doi.org/10.1006/jcis.2002.8336
  5. C. S. Park and W. W. Cheong, Rubber Technology, 1, 114 (2000)
  6. S. S. Choi, W. B. Im, J. H. Kim, Y. A. Park, and J. W. Woo, Elastomer, 37, 224 (2002)
  7. S. J. Kim, Polymer Science and Technology, 6, 118 (1995) https://doi.org/10.1002/pat.1995.220060305
  8. A. Tewarson, Flame Retardant Polymeric Materials, Plenum Press, New York, 1982
  9. J. Xiong, Y. Liu, X. Yang and X. Wang, Polymer Degradation and Stability, 86, 549 (2004) https://doi.org/10.1016/j.polymdegradstab.2004.07.001
  10. M. Berta, C. Lindsay, G. Pans, and G. Camino, Polymer Degradation and Stsbility, 91, 1179 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.05.027
  11. M. Song, H. S. Xia, K. J. Yao, and D. J. Hourston, European Journal, 40, 1615 (2004)
  12. A. Helfen, S. Merkourakis, G. Wang, M. G. Walls, E. Roy, K. Yu-Zhang, and Y. Leprince-Wang, Solid State Tonics, 176, 629 (2005) https://doi.org/10.1016/j.ssi.2004.09.006
  13. Chung-Hsin Lu and Jiun-Ting Lee, Ceramics International, 24, 285 (1998) https://doi.org/10.1016/S0272-8842(97)00013-8
  14. S. L Reegen, J. Appl. Polym. Sci., 10, 1247(1966) https://doi.org/10.1002/app.1966.070100903
  15. D. J. David and H. B. Staley, Analytical Chemistry of Polyurethane, Wiley-Interscience, New York, 1969
  16. L. J. Goff, Polym. Eng., 33, 497 (1993) https://doi.org/10.1002/pen.760330808
  17. A. F. Grand, Investigations of Fire Retarded Polymeric Systems; p.3076-3078, ANTEC '96
  18. M. Checchin, C. Cecchini, B. Cellarosi, and F. O. Sam, Polym. Degrad. Stab., 64, 573 (1999) https://doi.org/10.1016/S0141-3910(98)00131-1
  19. C. F. Cullis, M. M. Hirsschiler, and R. G. Madden, Eur. Poiym. J., 58, 493 (1992)
  20. P. A. Cusack, M. S. Heer, and A. W. Monk, Polym. Degrad Stab., 58, 229 (1997) https://doi.org/10.1016/S0141-3910(97)00055-4
  21. S. H. Chiu and W. K. Wang, Polymer, 39, 1951 (1998) https://doi.org/10.1016/S0032-3861(97)00492-8
  22. V. Babrauskas and S. J. Grayson, Heat Release in Fires, Elservier Science Publishers, New York, 1992
  23. L. Song, Y. Hu, Y. Tang, R. Zhang, Z. Chen, and W. Fan., Polymer Degradation and Stability, 87, 111 (2005) https://doi.org/10.1016/j.polymdegradstab.2004.07.012
  24. J. Wen and G. C. Wike, Chem. Mater., 8, 1667 (1996) https://doi.org/10.1021/cm9601143
  25. G. Hernandez-Paron, R. M. Lima, R. Nava, M. V. Garcia-Garduno, and V. M. Castano, Adv. Polym. Technol., 21, 116 (2002) https://doi.org/10.1002/adv.10015