DOI QR코드

DOI QR Code

Comparisons of lasing characteristics of InGaAs quantum-dot and quantum well laser diodes

InGaAs 양자점 레이저 다이오드와 양자우물 레이저 다이오드의 특성 비교

  • Jung, Kyung-Wuk (Nano Device Research Center, Korea Institute of Science & Technology) ;
  • Kim, Kwang-Woong (Nano Device Research Center, Korea Institute of Science & Technology) ;
  • Ryu, Sung-Pil (Nano Device Research Center, Korea Institute of Science & Technology) ;
  • Cho, Nam-Ki (Nano Device Research Center, Korea Institute of Science & Technology) ;
  • Park, Sung-Jun (Nano Device Research Center, Korea Institute of Science & Technology) ;
  • Song, Jin-Dong (Nano Device Research Center, Korea Institute of Science & Technology) ;
  • Choi, Won-Jun (Nano Device Research Center, Korea Institute of Science & Technology) ;
  • Lee, Jung-Il (Nano Device Research Center, Korea Institute of Science & Technology) ;
  • Yang, Hae-Suk (Department of Physics, Chung Ang University)
  • 정경욱 (한국과학기술연구원 나노소자연구센터) ;
  • 김광웅 (한국과학기술연구원 나노소자연구센터) ;
  • 유성필 (한국과학기술연구원 나노소자연구센터) ;
  • 조남기 (한국과학기술연구원 나노소자연구센터) ;
  • 박성준 (한국과학기술연구원 나노소자연구센터) ;
  • 송진동 (한국과학기술연구원 나노소자연구센터) ;
  • 최원준 (한국과학기술연구원 나노소자연구센터) ;
  • 이정일 (한국과학기술연구원 나노소자연구센터) ;
  • 양해석 (중앙대학교 자연과학대학 물리학과)
  • Published : 2007.09.30

Abstract

We have investigated the lasing characteristics of the InGaAs quantum dot laser diode (QD-LD) and InGaAs quantum well laser diode (QW-LD) operated at the 980 nm wavelength range. The 980-nm lasers are used as a pumping source for a erbium-doped fiber amplifier (EDFA) and it shows high efficiency in long-haul optical fiber network. We have compared the threshold current density, the characteristic temperature, the optical power and the internal efficiency of QD-LD and QW-LD under a pulsed current condition. The QD-LD shows superior performances to the QW-LD. Further optimization of a LD structure is expected to the superior performances of a QD-LD.

분자선 에피택시(molecular beam epitaxy, MBE)로 성장된 InGaAs 양자점 레이저 다이오드(quantum dot laser diode, QD-LD)와 InGaAs 양자우물 레이저 다이오드(quantum well laser diode, QW-LD)의 특성을 비교하였다. 펄스 입력전류 하에서 문턱전류밀도(threshold current density, $J_{th}$), 특성온도(characteristic temperature, $T_0$), 온도에 따른 발진파장의 변화도($d{\lambda}/dT$)를 측정한 결과, 양자우물 레이저 다이오드는 $J_{th}\;=\;322\;A/cm^2,\;T_0\;=\;55.2\;K,\;d{\lambda}/dT\;=\;0.41\;nm/^{\circ}C$로 측정되었으며, 양자점 레이저 다이오드는 $J_{th}\;=\;116\;A/cm^2,\;T_0\;=\;81.8\;K,\;d{\lambda}/dT\;=\;0.33\;nm/^{\circ}C$로 측정되었다. 양자점 레이저 다이오드는 양자우물 레이저 다이오드와 비교하였을 때, 문턱전류밀도 및 발진 광 파워가 상대적으로 우수한 결과를 보여주었다.

Keywords

References

  1. Y. J. Park, Y. M. Park, J. D. Song, W. J. Choi, I. K. Han, W. J. Cho, and J. I. Lee, Sae Mulli, The Korean Physical Society 47 (2), 127 (2003)
  2. Jin Soo Kim, Jin Hong Lee, Sung Ui Hong, Ho-Sang Kwack, Byung Seok Choi, and Dae Kon Oh, Journal of Korea Vacuum Society 15 (2), 194 (2006)
  3. Y. Arakawa and H. Sakaki, Applied Physics Letters 40 (11), 939 (1982)
  4. Park Gyoungwon, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, Photonics Technology Letters, IEEE 12 (3), 230 (2000) https://doi.org/10.1109/68.826897
  5. F. Klopf, J. P. Reithmaier, A. Forchel, P. Collot, M. Krakowski, and M. Calligaro, Electronics Letters 37 (6), 353 (2001) https://doi.org/10.1049/el:20010228
  6. Jae-In Yu, Hun-Bo Park, In-Ho Bae, and Sung Bae Park, Sae Mulli, The Korean Physical Society 52 (4), 420 (2006)
  7. Kwang Woong Kim, Jin Dong Song, Won Jun Choi, Jung Il Lee, and Jung Ho Park, Journal of the Korea Physical Society 49 (3), 1169 (2006)
  8. Govind P. Agrawal and Niloy K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993)
  9. H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, Applied Physics Letters 89 (7), 073113 (2006) https://doi.org/10.1063/1.2336998
  10. J. Lagois, E. Wagner, W. Bludau, and K. Losch, Physical Review B (Condensed Matter) 18 (8), 4325 (1978) https://doi.org/10.1103/PhysRevB.18.4325
  11. L. Schultheis and I. Balslev, Physical Review B (Condensed Matter) 28 (4), 2292 (1983) https://doi.org/10.1103/PhysRevB.28.2292
  12. A. I. Shkrebtii, N. Esser, W. Richter, W. G. Schmidt, F. Bechstedt, B. O. Fimland, A. Kley, and R. Del Sole, Physical Review Letters 81 (3), 721 (1998) https://doi.org/10.1103/PhysRevLett.81.721
  13. J. Y. Lim, J. D. Song, W. J. Choi, W. J. Cho, J. I. Lee, and H. S. Yang, Journal of Korea Vacuum Society 15 (2), 223 (2006)
  14. Kohki Mukai, Yoshiaki Nakata, Koji Otsubo, Mitsuru Sugawara, Naoki Yokoyama, and Hiroshi Ishikawa, Applied Physics Letters 76 (23), 3349 (2000) https://doi.org/10.1063/1.126644
  15. R. L. Sellin, Ch. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, Applied Physics Letters 78 (9), 1207 (2001) https://doi.org/10.1063/1.1350596
  16. Hideo Sugiura, Yoshio Noguchi, Ryuzo Iga, Takeshi Yamada, Hidehiko Kamada, Yoshihisa Sakai, and Hiroshi Yasaka, Applied Physics Letters 61 (3), 318 (1992) https://doi.org/10.1063/1.108477
  17. B. Zhao, T. R. Chen, L. E. Eng, Y. H. Zhuang, A. Shakouri, and A. Yariv, Applied Physics Letters 65 (14), 1805 (1994) https://doi.org/10.1063/1.112849
  18. Glenn-Yves Plaine, Carl Asplund, Petrus Sundgren, Sebastian Mogg, and Mattias Hammar, Japanese Journal of Applied Physics, Part 1 41 , 1040 (2002) https://doi.org/10.1143/JJAP.41.1040
  19. A. Schmidt, A. Forchel, J. Straka, I. Gyuro, P. Speier, and E. Zielinski, Journal of Vacuum Science and Technology B 10, 2896 (1992) https://doi.org/10.1116/1.585983