병렬제어를 적용한 8kW급 영전압/영전류 풀 브릿지 DC-DC 컨버터 개발

Development of 8kW ZVZCS Full Bridge DC-DC Converter by Parallel Operation

  • 노민식 (신라대 자동차기계전자공학부)
  • 발행 : 2007.10.20

초록

본 논문에서의 병렬제어를 이용한 8kW급 대용량 영전압/영전류 풀 브릿지 DC-DC 컨버터의 개발 결과를 보인다. 본 논문에서는 효율적인 시스템 구성을 위해 4-병렬 단위 모듈 운전을 제안한다. 각 단위모듈은 위상 천이 풀 브릿지를 채택하고, ZVZCS 운전을 위해 간단한 보조 회로를 2차측에 추가하였다. ZCS를 위한 보조 회로 동작 로직은 환류 모드 구간에서 1차측 전류를 제거하도록 구현하였다. 또한 병렬 운전시의 출력 전류의 균등 제어를 위해 위상천이로직을 활용한 Charge Control 방식을 적용하였다. 전압 제어기는 DSP TMS320LF2406을 활용하여 4 모듈의 출력전류 및 출력전압을 A/D로 입력받아 구현하였다. 개발된 컨버터는 차량에 설치되는 고속 발전기용 전력 변환기에 장착되었으며, 구축된 모니터링 시스템으로 고속 발전기의 실제 운전 조건에서 데이터를 획득하여, 분석을 통해 그 성능을 입증하였다.

In this paper, development of the 8kW parallel module converter is presented. For a effective configuration of FB-PWM converter, this paper proposes 4-parallel operation of 2 kw-module. FB converter of 2-kW module is controlled by phase shut PWM and in order to achieve ZVZCS, the simple auxiliary circuit is applied in secondary side. In order to achieve ZCS, control logic for auxiliary circuit operation is designed to reset the primary current during free-wheeling period. For output current sharing of 4-modules, the charge control is employed. The charge control logic is designed with phase shift PWM logic. Voltage controller is implemented by using DSP(TMS320LF2406) with A/D conversion data of the output current and voltage of each module. The developed converter is installed in PCU(Power Conditioning Unit) for HSG(High Speed Generator) in a vehicle and health monitoring system is implemented for vehicle operation test. Finally, performance of the developed converter is proved under practical operation of HSG.

키워드

참고문헌

  1. Jung-Won Kim, Hang-Seok Choi and Bo Hyung Cho, 'A novel droop method for converter parallel operation', IEEE Transactions on Power Electronics, Volume 17, Issue 1, pp. 25-32, 2002, Jan https://doi.org/10.1109/63.988666
  2. H. S. Choi, J. W. Kim, J. H. Lee, and B. H. Cho, 'Modeling, analysis and design of 10 kW parallel module zero-voltage zero-current switched full bridge PWM converter,' Proc. of APEC'00 Rec., pp. 321-326
  3. Jung-Won Kim, Jung-Sik Yon and B.H. Cho, 'Modeling control and design of input-series-output -parallel-connected converter for high-speed-train power system,' IEEE Trans. on Industrial Electronics, Vol 48, Issue 3, pp. 536-544, 2001, June https://doi.org/10.1109/41.925580
  4. J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B.H. Cho, 'High voltage high power ZVS full bridge PWM converter employing active snubber,' IEEE APEC Rec. pp. 158-163, 1991
  5. J. G. Cho, J. Sabate, G. Hua, and F. C. Lee, 'Zero voltage and zero current switching full bridge PWM converter for high power applications,' IEEE Trans. Power Electron., vol. 11, pp. 622-628, 1996, July https://doi.org/10.1109/63.506128
  6. J. G. Cho, G. H. Rim, and F. C. Lee, 'Zero voltage and zero current switching full bridge PWM converter secondary active clamp,' IEEE Trans. Power Electron., vol. 13, pp. 601-607, 1998, July https://doi.org/10.1109/63.704125
  7. K. Wang, F.C. Lee, and J. Lai, 'Operation principles of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,' Proc. of IEEE APEC 2000, pp. 111-118
  8. K. Wang, L. Zhu D. Qu, J. Lai and F. C. Lee, 'Design, implementation, and experimental results of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,' Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual Vol 2, pp.1058-1063, 18-23, 2000, June
  9. W. Tang, F.C. Lee, R.B. Ridley and I.Cohen, 'Charge control; modeling, analysis, and design,' IEEE Trans. on Power Electronics, vol. 8, no. 4, pp.396-403, 1993, Oct https://doi.org/10.1109/63.261009