초록
An approach to identify Chinese event types is proposed in this paper which combines a good feature selection policy and a Maximum Entropy (ME) model. The approach not only effectively alleviates the problem that classifier performs poorly on the small and difficult types, but improve overall performance. Experiments on the ACE2005 corpus show that performance is satisfying with the 83.5% macro - average F measure. The main characters and ideas of the approach are: (1) Optimal feature set is built for each type according to local feature selection, which fully ensures the performance of each type. (2) Positive and negative features are explicitly discriminated and combined by using one - sided metrics, which makes use of both features' advantages. (3) Wrapper methods are used to search new features and evaluate the various feature subsets to obtain the optimal feature subset.