DOI QR코드

DOI QR Code

Comparison of Quantum Wells based on InGaAs(P)/InP and InGa(Al)As/InAlAs Material Systems in View of Carrier Escape Times for High-Saturation-Optical-Power Electroabsorption Modulators

  • Received : 2007.08.27
  • Published : 2007.09.25

Abstract

We compare electroabsorption modulators (EAMs) with multiple quantum wells (MQWs) based on InGaAs(P)/InP and InGa(Al)As/InAlAs material systems. We carefully choose the quantum-well structures so that the structures based on different material systems have similar band-offset energies and excition-peak wavelengths. Assuming the same light wavelength of $1.55{\mu}m$, we show the transfer functions of EAMs with each quantum-well structure and calculate the escape times of photogenerated charge carriers. As the heavy-hole escape time of the quantum well based on InGaAs(P)/InP is much longer than those of photogenerated charge carriers of InGa(Al)As/InAlAs, the EAM based on the InGa(Al)As/InAlAs material seems to be more suitable for high-optical-power operation.

Keywords

References

  1. C. H. Henry, 'The origin of quantum wells and the quantum well laser,' in Quantum Well Lasers, P. S. Zory, Jr., ed. (Academic Press, San Diego, 1993), pp. 8-13
  2. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, 'Bandedge electro-absorption in quantum well structures: the quantum confined Stark effect,' Phys. Rev. Lett., vol. 53, no. 22, pp. 2173-2177, 1984 https://doi.org/10.1103/PhysRevLett.53.2173
  3. Y. Miyazaki, H. Tada, S. Tokizaki, K. Takagi, Y. Hanamaki, T. Aoyagi, and Y. Mitsui, '+1 dBm average optical output power operation of small-chirp 40-Gbps electroabsorption modulator with tensile-strained asymmetric quantum-well absorption layer,' IEEE J. Quantum Electron., vol. 39, no. 8, pp. 1009-1017, 2003 https://doi.org/10.1109/JQE.2003.814370
  4. J.-R. Kim, 'Study of several schemes for internal wavelength locker integrated 10 Gbps electro-absorption modulated laser modules in metro dense WDM applications,' J. Opt. Soc. Korea, vol. 8, no. 2, pp. 55-58, 2004 https://doi.org/10.3807/JOSK.2004.8.2.055
  5. W. J. Choi and J. C. Yi, 'Linearization of multiple quantum well electro-absorption modulator by using quantum well intermixing,' J. Korean Phys. Soc., vol. 46, no. 6, pp. 1452-1457, 2005
  6. Y. Miyazaki, T. Yamatoya, K. Matsumoto, K. Kuramoto, K. Shibata, T. Aoyagi, and T. Ishikawa, 'High-power ultralow-chirp 10-Gb/s electroabsorption modulator integrated laser with ultrashort photocarrier lifetime,' IEEE J. Quantum Electron., vol. 42, no. 4, pp. 357-362, 2006 https://doi.org/10.1109/JQE.2006.870228
  7. C. H. Cox, III., Analog Optical Links: Theory and Practice (Cambridge University Press, New York, 2004), pp. 74-79
  8. D. J. Moss, M. Aoki, and H. Sano, 'Comparison of photoconductive response times of InGaAs/InAlAs and InGaAs/InGaAsP multi-quantum well waveguide modulator,' Jpn. J. Appl. Phys., vol. 33, pp. L328-L330, 1994 https://doi.org/10.1143/JJAP.33.L328
  9. B. J. Hawdon, T. Tutken, A. Hangleiter, R. W. Glew, and J. E. A. Whiteaway, 'Direct comparison of InGaAs/ InGaAlAs and InGaAs/InGaAsP quantum well modulators,' Electron. Lett., vol. 29, no. 8, pp. 705-707, 1993 https://doi.org/10.1049/el:19930472
  10. D.-S. Shin, 'Effect of a step barrier on the quantumconfined Stark effect and applications to electroabsorption modulators with high saturation optical power,' J. Korean Phys. Soc., vol. 47, no. 2, pp. 364-370, 2005 https://doi.org/10.3938/jkps.47.364
  11. S. A. Pappert, Ph. D. Dissertation, Univ. of California, San Diego, 1993
  12. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, 'Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,' IEEE J. Quantum Electron., vol. 27, no. 10, pp. 2281-2295, 1991 https://doi.org/10.1109/3.97272
  13. D.-S. Shin, 'Reduction in escape times of photogenerated charge carriers with asymmetric intrastep quantum wells and subsequent improvement in saturation optical intensity,' Jpn. J. Appl. Phys., vol. 45, no. 12, pp. 9063-9065, 2006 https://doi.org/10.1143/JJAP.45.9063

Cited by

  1. Optical properties of InGaAs/InGaAlAs quantum wells for the 1520–1580 nm spectral range vol.50, pp.9, 2016, https://doi.org/10.1134/S1063782616090098