DOI QR코드

DOI QR Code

기후변화가 습지 내 온실기체 발생과 미생물 군집구조에 미치는 영향

Climate Effects on Greenhouse Gas Emissions and Microbial Communities in Wetlands

  • 김선영 (이화여자대학교 환경공학과) ;
  • 강호정 (연세대학교 토목환경공학부)
  • Kim, Seon-Young (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kang, Ho-Jeong (School of Civil and Environmental Engineering, Yonsei University)
  • 발행 : 2007.09.30

초록

대기 중 이산화탄소 농도 및 온도 증가와 강수 패턴 변화에 따른 가뭄 정도 및 횟수의 변화는 습지에서 발생하는 온실가스의 양에 영향을 미칠 수 있다. 습지에 존재하는 다양한 미생물 군집(탈질세균 및 메탄생성세균) 이 온실가스 생성에 있어 중요한 역할을 감당한다. 본 논문은 지금까지 전지구적 기후변화가 습지에서의 온실가스 발생과 관련 미생물 군집에 미치는 영향에 관한 다양한 연구를 정리하는 데 그 목적이 있다. 대기 중 이산화탄소 농도와 기온 증가는 일반적으로 온실가스 생성을 증가시켰다. 반면, 가뭄의 영향은 기체 종류와 가뭄 정도에 따라 다양한 결과가 보고되었다. 기후변화에 따른 미생물 군집의 변화는 습지시스템에서 보고된 연구의 부족으로 인해 특정한 결론을 도출할 수 없었다. 본 총설은 습지에서 미생물을 매개로 한 반응을 연구함에 있어 관련 미생물 군집구조의 특성을 파악하고, 다양한 환경인자에 대한 그들의 반응을 알아내는 것과 미생물 반응과 군집구조간의 상관 관계를 도출하는 것의 중요성을 제안한다. 이는 향후 전지구적 기후 변화가 습지의 생태학적 기능에 미칠 영향을 더 잘 이해하고 예측하는데 있어 매우 중요할 것이라 사료된다.

Global climate changes including elevated $CO_2$, drought, and global warming may influence greenhouse gas emissions in wetlands. A variety of microbial communities including denitrifiers and methanogens play a key role in determining such processes. In this paper we summarize current knowledge on the effects of climate changes on $CO_2,\;CH_4$, and $N_2O$ production and microbial communities mediating those processes in wetlands. Elevated atmospheric $CO_2$ and warming generally increase gas emissions, but effects of droughts differ with gas type and drying level. The responses of microbial community to climate changes in terms of composition, diversity and abundance are still in question due to lack of studies in wetlands. Based on the present review, it is suggested that future studies on microbial processes should consider microbial community and relationships between microbial function and structure with diverse environmental factors including climate changes. Such knowledge would be crucial to better understand and predict accurately any shifts in ecological functions of wetlands.

키워드

참고문헌

  1. Alm, J., L. Schulman, J. Walden, H. Nykänen, P. J. Martikainen, and J. Silvola, 1999: Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80, 161-174 https://doi.org/10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2
  2. Baldwin, D. S., and A. M. Mitchell, 2000: The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-flood plain systems: a synthesis. Regulated Rivers Research and Management 16(5), 457-467 https://doi.org/10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B
  3. Bayley, S. E., R. S. Behr, and C. A. Elly, 1986: Retention and release of S from A freshwater wetland. Water, Air, and Soil Pollution 31(1-2), 101-114 https://doi.org/10.1007/BF00630824
  4. Biasi, C., O. Rusalimova, H. Meyer, C. Kaiser, W. Wanek, P. Barsukov, H. Junger, and A. Richter, 2005: Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Communications in Mass Spectrometry 19, 1401-1408 https://doi.org/10.1002/rcm.1911
  5. Boon, P. I., A. Mitchell, and K. Lee, 1997: Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. Hydrobiologia 357, 73-87 https://doi.org/10.1023/A:1003126601466
  6. Briones, M. J. I., J. Poskitt, and N. Ostle, 2004: Influence of warming and enchytraeid activities on soil $CO_2$ and $CH_4$ fluxes. Soil Biology and Biochemistry 36, 1851-1859 https://doi.org/10.1016/j.soilbio.2004.04.039
  7. Carnol, M., and P. Ineson, 1999: Environmental factors controlling $NO^{3−}$ leaching, $N_2O$ emissions and numbers of $NH^{4+}$ oxidisers in a coniferous forest soil. Soil Biology and Biochemistry 31(7), 979-990 https://doi.org/10.1016/S0038-0717(99)00007-3
  8. Chin, K. J., T. Lukow, and R. Conrad, 1999: Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Applied and Environmental Microbiology 65(6), 2341-2349
  9. Chung, H., D. R. Zak, and E. A. Lilleskov, 2006: Fungal community composition and metabolism under elevated $CO_2$ and $O_3$. Oecologia 147(1), 143-154 https://doi.org/10.1007/s00442-005-0249-3
  10. Cicerone, R. J., and R. S. Oremland, 1988: Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles 2, 299-327 https://doi.org/10.1029/GB002i004p00299
  11. Cole, L., R. D. Bardgett, D. P. Ineson, and P. J. Hobbs, 2002: Enchytraeid worm (Oligochaeta) influences on microbial community structure, nutrient dynamics and plant growth in blanket peat subjected to warming. Soil Biology and Biochemistry 34(1), 83-92 https://doi.org/10.1016/S0038-0717(01)00159-6
  12. Corstanje, R., 2003: Experimental and multivariate analysis of biogeo-indicators of change in wetland ecosystems. Ph.D. dissertation. University of Florida, Gainesville
  13. Davidsson, T. E., M. Trepel, and J. Schrautzer, 2002: Denitrification in drained and rewetted minerotrophic peat soils in Northern Germany (Pohnsdorfer Stauung). Journal of Plant Nutrition and Soil Science 165(2), 199-204 https://doi.org/10.1002/1522-2624(200204)165:2<199::AID-JPLN199>3.0.CO;2-I
  14. Deiglmayr, K., L. Philippot, U. A. Hartwig, and E. Kandeler, 2004: Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric $pCO_2$. FEMS Microbiology Ecology 49, 445-454 https://doi.org/10.1016/j.femsec.2004.04.017
  15. Deslippe, J. R., K. N. Egger, and G. H. R. Henry, 2005: Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic. FEMS Microbiology Ecology 53(1), 41-50 https://doi.org/10.1016/j.femsec.2004.12.002
  16. Dowrick, D. J., C. Freeman, M. A. Lock, and B. Reynolds, 2006: Sulphate reduction and the suppression of peatland methane emissions following summer drought. Geoderma 132, 384-390 https://doi.org/10.1016/j.geoderma.2005.06.003
  17. Eliasson, P. E., R. E. McMurtrie, D. A. Pepper, M. Stromgren, S. Linder, and G. I. Agren, 2005: The response of heterotrophic $CO_2$ flux to soil warming. Global Change Biology 11(1), 167-181 https://doi.org/10.1111/j.1365-2486.2004.00878.x
  18. Fenner, N., C. Freeman, and B. Reynolds, 2005: Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biology and Biochemistry 37(10), 1814-1821 https://doi.org/10.1016/j.soilbio.2005.02.032
  19. Fenner, N., D. J. Dowrick, M. A. Lock, C. R. Rafarel, and C. Freeman, 2006: A novel approach to studying the effects of temperature on soil biogeochemistry using a thermal gradient bar. Soil Use and Management 22, 267-273 https://doi.org/10.1111/j.1475-2743.2006.00037.x
  20. Fey, A., and R. Conrad, 2000: Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Applied and Environmental Microbiology 66(11), 4790-4797 https://doi.org/10.1128/AEM.66.11.4790-4797.2000
  21. Fierer, N., B. P. Colman, J. P. Schimel, and R. B. Jackson, 2006: Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Global Biogeochemical Cycles 20, GB3026 https://doi.org/10.1029/2005GB002644
  22. Fierer, N., J. P. Schimel, and P. A. Holden, 2003: Influence of drying-rewetting frequency on soil bacterial community structure. Microbial Ecology 45, 63-71 https://doi.org/10.1007/s00248-002-1007-2
  23. Freeman, C, J. Hudson, M. A. Lock, B. Reynolds, and C. Swanson, 1994: A possible role for sulphate in the suppression of methane fluxes following drought. Soil Biology and Biochemistry 26, 1439-1442 https://doi.org/10.1016/0038-0717(94)90229-1
  24. Freeman, C, N. Fenner, N. J. Ostle, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes, and J. Hudson, 2004. Dissolved organic carbon export from peatlands under elevated carbon dioxide levels. Nature 430, 195-198 https://doi.org/10.1038/nature02707
  25. Freeman, C., G. B. Nevison, H. Kang, S. Hughes, B. Reynolds, and J. A. Hudson, 2002: Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland. Soil Biology and Biochemistry 34, 61-67 https://doi.org/10.1016/S0038-0717(01)00154-7
  26. Freeman, C., G. Liska, N. J. Ostle, J. A. Hudson., M. A. Lock, and B. Reynolds, 1996: Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant and Soil 180, 121-127 https://doi.org/10.1007/BF00015418
  27. Freeman, C., N. J. Ostle, and H. Kang, 2001: An enzymic latch on a global carbon store. Nature 409: 149
  28. Freeman, C., M. A. Lock, and B. Reynolds, 1993: Fluxes of carbon dioxide, methane and nitrous oxide from a Welsh peatland following simulation of water table draw-down: Potential feedback to climatic change. Biogeochemistry 19, 51-60
  29. Gorham, E., 1991: Northern peatlands: role in the carbon cycle and probable to climatic warming. Ecological Applications 1, 182-195 https://doi.org/10.2307/1941811
  30. Griffiths, B. S., K. Ritz, N. Ebblewhite, E. Paterson, and K. Killham, 1998: Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations with observations on wheat rhizosphere. Soil Biology and Biochemistry 30(3), 315-321 https://doi.org/10.1016/S0038-0717(97)00133-8
  31. Gruter, D., B. Schmid, and H. Brandl, 2006: Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiology 6, 68-76 https://doi.org/10.1186/1471-2180-6-68
  32. Heilman, J. L., F. A. Heinsch, D. R. Cobos, and K. J. McInnes, 2000: Energy balance of a high marsh on the Texas Gulf Coast: effect of water availability. Journal of Geophysical Research 105, 22371-22377 https://doi.org/10.1029/2000JD900334
  33. Heinsch, F. A., J. L. Heilman, K. J. McInnes, D. R. Cobos, D. A. Zuberer, and D. L. Roelke, 2004: Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: effects of freshwater availability. Agricultural and Forest Meteorology 125, 159-172 https://doi.org/10.1016/j.agrformet.2004.02.007
  34. Hirschel, G., C. Korner, and J. A. Arnone III, 1997: Will rising atmospheric $CO_2$ affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 110, 387-392 https://doi.org/10.1007/s004420050173
  35. Hooper, D. U., D. E. Bignell, V. K., Brown, L. Brussaard, J. M, Dangerfield, D. H. Wall, and A. D. Wardle, D. C. Coleman, K. E. Giller, P. Lavelle, W. H. Van Del Putten, P. C. de Ruiter, J. Rusek, W. L. Silver, J. M. Tiedje, and V. Wolters, 2000: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. Bioscience 50, 1049-1061 https://doi.org/10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
  36. Hutchin, P. R., M. C. Press, J. A. Lee, and T. W. Ashenden, 1995: Elevated concentrations of $CO_2$ may double methane emissions from mires. Global Change Biology 1, 125-128 https://doi.org/10.1111/j.1365-2486.1995.tb00012.x
  37. IPCC, 2001: Climate Change 2001: the scientific basis. Cambridge University Press
  38. Janus, L. R., N. L. Angeloni, J. McCormack, S. T. Rier, N. C. Tuchman, and J. J. Kelly, 2005: Elevated atmospheric $CO_2$ alters soil microbial communities associated with Trembling Aspen (Populus tremuloides) roots. Microbial Ecology 50(1), 102-109 https://doi.org/10.1007/s00248-004-0120-9
  39. Jauhiainen, J., J. Silvola, K. Tolonen, and H. Vasander, 1997: Response of Sphagnum fuscum to water levels and $CO_2$ concentration. Journal of Bryology 19, 391-400 https://doi.org/10.1179/jbr.1997.19.3.391
  40. Jossi, M., N. Fromin, S. Tarnawski, F. Kohler, F. Gillet, M. Aragno, and J. Hamelin, 2006: How elevated $pCO_2$ modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions. FEMS Microbiology Ecology 55,339- 350 https://doi.org/10.1111/j.1574-6941.2005.00040.x
  41. Kang, H. J., C. Freeman, and T. W. Ashendon, 2001: Effects of elevated $CO_2$ on fen peat biogeochemistry. The Science of the Total Environment 279, 45-50 https://doi.org/10.1016/S0048-9697(01)00724-0
  42. Kang, H. J., S. Y. Kim, N. Fenner, and C. Freeman, 2005: Shifts of soil enzyme activities in wetlands exposed to elevated $CO_2$. Science of the Total Environment 337, 207-212 https://doi.org/10.1016/j.scitotenv.2004.06.015
  43. Kim, J., S. B. Verma, and D. P. Billesbach, 1999: Seasonal variation in methane emission from a temperate Phragmites- dominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology 5(4), 433-440 https://doi.org/10.1046/j.1365-2486.1999.00237.x
  44. Kim, J., and S. B. Verma, 1992: Soil surface $CO_2$ flux in a Minnesota peatland. Biogeochemistry 18, 37-51 https://doi.org/10.1007/BF00000425
  45. Kim, J., S. B. Verma, D. P. Billesbach, and R. J. Clement, 1998: Diel variation in methane emission from a midlatitude prairie wetland: significance of convective throughflow in phragmites australis. Journal of Geophysical research 103, 28029-28039 https://doi.org/10.1029/98JD02441
  46. Kim, S. Y., 2007: A study of wetland vegetation and microbial communities under elevated $CO_2$, warming, and drought. PhD dissertation, Ewha Womans University
  47. Knorr, W., I. C. Prentice, J. I. House, and E. A. Holland, 2005: On the available evidence for the temperature dependence of soil organic carbon. Biogeosciences Discussions 2, 749-755 https://doi.org/10.5194/bgd-2-749-2005
  48. Lafleur, P. M., T. R. Moore, N. T. Roulet, and S. Frolking, 2005: Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8, 619-629 https://doi.org/10.1007/s10021-003-0131-2
  49. Lee, S. H., S. Y. Kim, and H. J. Kang, 2004: Influence of elevated $CO_2$ on denitrifying bacterial community in a wetland soil. Korean Journal of Microbiology 40(3), 244-247
  50. Lipson, D. A., M. Blair, G. Barron-Gafford, K. Grieve, and R. Murthy, 2006: Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide. Microbial Ecology 51(3), 302-314 https://doi.org/10.1007/s00248-006-9032-1
  51. Lueders, T., and M. Friedrich, 2000: Archaeal population dynamics during sequential reduction processes in rice field soil. Applied and Environmental Microbiology 66(7), 2732-2742 https://doi.org/10.1128/AEM.66.7.2732-2742.2000
  52. Marilley, L., U. A. Hartwig, and M. Aragno, 1999: Influence of an elevated atmospheric $CO_2$ content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microbial Ecology 38, 39-49 https://doi.org/10.1007/s002489900155
  53. Mayer, H. P., and R. Conrad, 1990: Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiology Ecology 73, 103-112 https://doi.org/10.1111/j.1574-6968.1990.tb03930.x
  54. McCune, B., and J. B. Grace, 2002: Analysis of Ecological Communities. Gleneden Beach. MjM Software Design, 300pp
  55. Megonigal, J. P., and W. H. Schlesinger, 1997: Enhanced $CH_4$ emission from a wetland soil exposed to elevated $CO_2$. Biogeochemistry 37(1), 77-88 https://doi.org/10.1023/A:1005738102545
  56. Metje, M., and P. Frenzel, 2005: Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland. Applied and Environmental Microbiology 71(12), 8191-8200 https://doi.org/10.1128/AEM.71.12.8191-8200.2005
  57. Mitchell, E. A. D., A. Buttler, P. Grosvernier, H. Rydin, A. Siegenthaler, and J. M. Gobat, 2002: Contrasted effects of increased N and $CO_2$ supply on two keystone species in peatland restoration and implications for global change. Ecology 90, 529-533 https://doi.org/10.1046/j.1365-2745.2002.00679.x
  58. Montealegre, C. M., C. van Kessel, J. M. Blumenthal, H. Hur, U. A. Hartwig, and M. J. Sadowsky, 2000: Elevated Atmospheric $CO_2$ alters microbial population structure in a pasture ecosystem. Global Change Biology 6, 475-482 https://doi.org/10.1046/j.1365-2486.2000.00326.x
  59. Montealegre, C. M., C. van Kessel, M. P. Russelle, and M. J. Sadowsky, 2002: Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant and Soil 243(2), 197-207 https://doi.org/10.1023/A:1019901828483
  60. Moore, T. R., and N. T. Roulet, 1993: Methane flux: Water table relations in northern wetlands. Geophysical Research Letters 20(7), 587-590 https://doi.org/10.1029/93GL00208
  61. Moore, T. R., and R. Knowles, 1989: Influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science 69(1), 33-38 https://doi.org/10.4141/cjss89-004
  62. Moore, T. R., J. L. Bubier, S. E. Frolking, P. M. Lafleur, and N. T. Roulet, 2002: Plant biomass and production and $CO_2$ exchange in an ombrotrophic bog. Journal of Ecology 90(1), 25-36 https://doi.org/10.1046/j.0022-0477.2001.00633.x
  63. Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, and G.. Renella, 2003: Microbial diversity and soil functions. European Journal of Soil Science 54(4), 655-670 https://doi.org/10.1046/j.1351-0754.2003.0556.x
  64. Niklaus, P. A., D. Alphei, D. Ebersberger, C. Kampichler, E. Kandeler, and D. Tscherko, 2003: Six years of in situ $CO_2$ enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. Global Change Biology 9, 585-600 https://doi.org/10.1046/j.1365-2486.2003.00614.x
  65. Niklaus, P. A., and C. Korner, 1996: Responses of soil microbiota of a late successional alpine grassland to long term $CO_2$ enrichment. Plant and Soil 184(2), 219-229 https://doi.org/10.1007/BF00010451
  66. Oechel, W. C., G. L. Vourlitis, S. J. Hastings, R. P. Ault, and P. Bryant, 1998: The effects of water table manipulation and elevated temperature on the net $CO_2$ flux of wet sedge tundra ecosystems. Global Change Biology 4, 77-90 https://doi.org/10.1046/j.1365-2486.1998.00110.x
  67. Phillips, R. L., D. R. Zak, W. E. Holmes, and D. C. White, 2002: Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131(2), 236-244 https://doi.org/10.1007/s00442-002-0868-x
  68. Ratering, S., and R. Conrad, 1998: Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Global Change Biology 4(4), 397-407 https://doi.org/10.1046/j.1365-2486.1998.00162.x
  69. Rees, G. N., G. O. Watson, D. S. Baldwin, and A. M. Mitchell, 2006: Variability in sediment microbial communities in a semipermanent stream: impact of drought. Journal of the North American Benthological Society 25(2), 370-378 https://doi.org/10.1899/0887-3593(2006)25[370:VISMCI]2.0.CO;2
  70. Robertson, G. P., and J. M. Tiedje, 1987: Nitrous oxide sources in aerobic soils: Nitrification, denitrification and other biological processes. Soil Biology and Biochemistry 19(2), 187-193 https://doi.org/10.1016/0038-0717(87)90080-0
  71. Roulet, N. T, R. Ash, and T. R. Moore, 1992: Low boreal wetlands as a source of atmospheric methane. Journal of Geophysical Research 97, 3739-3749 https://doi.org/10.1029/91JD03109
  72. Roulet, N. T., 2000: Peatlands, carbon storage, greenhouse gases, and the kyoto protocol: prospects and significance for Canada. Wetlands 20(4), 605-615 https://doi.org/10.1672/0277-5212(2000)020[0605:PCSGGA]2.0.CO;2
  73. Saarnio, S., and J. Silvola, 1999: Effects of increased $CO_2$ and N on $CH_4$ efflux from a boreal mire: a growth chamber experiment. Oecologia 119(3), 349-356 https://doi.org/10.1007/s004420050795
  74. Saarnio, S., T. Saarinen, H. Vasander, and J. Silvola, 2000: A moderate increase in the annual $CH_4$ efflux by raised $CO_2$ or $NH_4NO_3$ supply in a boreal oligotrophic mire. Global Change Biology 6(2), 137-144 https://doi.org/10.1046/j.1365-2486.2000.00294.x
  75. Schreader, C. P., W. R. Rouse, T. J. Griffis, L. D. Boudreau, and P. D. Blanken, 1998: Carbon dioxide fluxes in a northern fen during a hot-dry summer. Global Biogeochemical Cycles 12, 729-740 https://doi.org/10.1029/98GB02738
  76. Schrope, M. K., J. P. Chanton, L. H. Allen, and J. T. Baker, 1999: Effect of $CO_2$ enrichment and elevated temperature on methane emissions from rice Oryza sativa. Global Change Biology 5, 587-599 https://doi.org/10.1111/j.1365-2486.1999.00252.x
  77. Shurpali, N. J., S. B. Verma, J. Kim, and T. J. Arkebauer, 1995: Carbon dioxide exchange in a peatland ecosystem. Journal of Geophysical Research 100, 14319-14326 https://doi.org/10.1029/95JD01227
  78. Sowerby, A., B. Emmett, C. Beier, A. Tietema, J. Penuelas, M. Estiarte, M. J. M.Van Meeteren, S. Hughes, and C. Freeman, 2005: Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biology and Biochemistry 37, 1805-1813 https://doi.org/10.1016/j.soilbio.2005.02.023
  79. Thormann, M. N., S. E. Bayley, and R. S. Currah, 2004: Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands. Canadian Journal of Microbiology 50, 793-802 https://doi.org/10.1139/w04-064
  80. Tingey, D. T., E. H. Lee, R. Waschmann, M. G. Johnson, and P. T. Rygiewicz, 2006: Does soil $CO_2$ efflux acclimatize to elevated temperature and $CO_2$ during ong-term treatment of Douglas-fir seedlings? New Phytologist 170, 107-118 https://doi.org/10.1111/j.1469-8137.2006.01646.x
  81. Updegraff, K., S. D. Bridgham, J. Pastor, P. Weishampel, and C. Harth, 2001: Response of $CO_2$ and $CH_4$ emissions from peatlands to warming and water table manipulation. Ecological Applications 11(2), 311-326
  82. Updegraff, K., J. Pastor, S. D. Bridgham, and C. A. Johnston, 1995: Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecological Applications 5(1), 151-163 https://doi.org/10.2307/1942060
  83. Waldrop, M. P., and M. K. Firestone, 2004: Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67, 235-248 https://doi.org/10.1023/B:BIOG.0000015321.51462.41
  84. Wang, B., and K. Adachi, 1999: Methane production in a flooded soil in response to elevated atmospheric carbon dioxide concentrations. Biology of Fertile Soils 29, 218-220 https://doi.org/10.1007/s003740050547
  85. Whiting, G. J., and J. P. Chanton, 1993: Primary production control of methane emission from wetlands. Nature 364, 794-795 https://doi.org/10.1038/364794a0
  86. Wiemken, V., E. Laczko, K. Ineichen, and T. Boller, 2001: Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in Beech-Spruce ecosystems on siliceous and calcareous soil. Microbial Ecology 42(2), 126-135
  87. Yavitt, J. B., and M. Seidman-Zager, 2006: Methanogenic conditions in northern peat soils. Geomicrobiology Journal 23, 119-127 https://doi.org/10.1080/01490450500533957
  88. Zak, D. R., K. S. Pregitzer, J. S. King, and W. E. Holmes, 2000: Elevated atmospheric $CO_2$, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist 147(1), 201-222 https://doi.org/10.1046/j.1469-8137.2000.00687.x
  89. Zhang, W., K. M. Parker, Y. Luo, S. Wan, L. L. Wallace, and S. Hu, 2005: Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology 11, 266-277 https://doi.org/10.1111/j.1365-2486.2005.00902.x