Abstract
Image processing systems have been used to measure the plant parameters such as size, shape and structure of plants. There are yet some limited applications for evaluating plant colors due to illumination conditions. This study was focused to present adaptive methods to analyze plant leaf color regardless of illumination conditions. Color patches attached on the calibration bars were selected to represent leaf colors of lettuces and to test a possibility of health monitoring of lettuces. Repeatability of assigning leaf colors to color patches was investigated by two-tailed t-test for paired comparison. It resulted that there were no differences of assignment histogram between two images of one lettuce that were acquired at different light conditions. It supported that use of the calibration bars proposed for leaf color analysis provided color constancy, which was one of the most important issues in a video color analysis. A health discrimination equation was developed to classify lettuces into one of two classes, SOUND group and POOR group, using the machine vision. The classification accuracy of the developed health discrimination equation was 80.8%, compared to farmers' decision. This study could provide a feasible method to develop a standard color chart for evaluating leaf colors of plants and plant health monitoring system using the machine vision.