Low Pressure Hybrid Membrane Processes for Drinking Water Treatment

저압 막여과 혼성공정을 이용한 고도 정수처리

  • Choo, Kwang-Ho (Department of Environmental Engineering, Kyungpook National University) ;
  • Chung, Ji-Hyun (Water Reseources Research Institute, K-Water) ;
  • Park, Hak-Soon (Department of Environmental Engineering, Kyungpook National University)
  • 추광호 (경북대학교 환경공학과) ;
  • 정지현 (한국수자원공사 수자원연구원 상하수도연구소) ;
  • 박학순 (경북대학교 환경공학과)
  • Published : 2007.09.30

Abstract

Membrane filtration processes are increasingly popular for drinking water treatment that requires high quality of water. Low pressure membrane(LPM) processes such as microfiltration(MF) and ultrafiltration(UF), however, are ineffective in the removal of dissolved organic matter and also membrane fouling is still an important issue to be resolved. High pressure membranes(HPMs) may guarantee better water quality, but at the high energy consumption. Thus, various approaches to combine LPM processes with other physicochemical methods have been recently made to achieve their efficiency to the level comparable to that of HPM processes. In this work, therefore, hybrid processes that coupled MF/UF with coagulation, adsorption, chemical reactions(e.g., chelation and oxidation) are reviewed regarding system design and performance and also membrane surface modifications conducted by grafting and polyelectrolyte multilayer formation were assessed.

현재 막여과 공정은 정수처리에서 많은 관심을 받고 있다. 그러나 막여과 공정은 저압 운전이 가능한 정밀/한외여과 분리막을 이용할 때는 효과적인 용존성 유기물 제거가 이루어지지 않으며 막오염 현상으로 분리막의 투과도 감소가 일어난다. 고압 분리막을 이용할 경우 양질의 수질은 얻을 수 있으나 고압 운전으로 인하여 운전비용의 소모가 높다. 따라서 최근 분리막의 효율적인 정수처리 적용과 성능 향상을 위해서 다른 물리화학적 공정과 결합한 혼성공정에 대한 다양한 접근이 이루어지고 있다. 본 연구에서는 혼성공정으로 응집, 흡착, 특정 화학반응, 막표면 코팅 등과 정밀/한외여과 공정을 결합한 경우의 특징, 처리효율, 고려사항 등을 고찰하였다.

Keywords

References

  1. A. W. Zularisam, A. F. Ismaila, and R. Salim, 'Behaviours of natural organic matter in membrane filtration for surface water treatment - a review', Desalination, 194, 211 (2006) https://doi.org/10.1016/j.desal.2005.10.030
  2. N. H. Lee, G. Amy, and J. Lozier, 'Understanding natural organic matter fouling in low-pressure membrane filtration', Desalination, 178, 85 (2005) https://doi.org/10.1016/j.desal.2004.11.030
  3. M. D. Kennedy, H. K. Chun, V. A. Q. Yangali, B. G. J. Heijman, and J. C. Schippers, 'Natural organic matter (NOM) fouling of ultrafiltration membranes: fractionation of NOM in surface water and characterisation by LC-OCD', Desalination, 178, 73 (2005) https://doi.org/10.1016/j.desal.2005.02.004
  4. N. H. Lee, G. Amy, and J. P. Croué, H. Buisson, 'Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM)', Water Res., 38, 4511 (2004) https://doi.org/10.1016/j.watres.2004.08.013
  5. N. E. Park, B. S. Kwon, S. D. Kim, and J. W. Cho, 'Characterizations of the colloidal and microbial organic matters with respect to membrane foulants', J. Membr. Sci., 275, 29 (2006) https://doi.org/10.1016/j.memsci.2005.08.020
  6. Q. Li and M. Elimelech, 'Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter', J. Membr. Sci., 278, 72 (2006) https://doi.org/10.1016/j.memsci.2005.10.045
  7. G. Cathalifaud, M. T. W. Mossa, and M. Mazet, 'Performed ferric hydroxide flocs as adsorbents for humic substances', Water Sci. Teclmol., 27, 55 (1993)
  8. C. Crozes, P. White, and M. Marshal, 'Enhanced coagulation: its effect on NOM removal and chemical costs', J. AWWA, 87, 78 (1995)
  9. J. Duan and J. Gregory, 'Coagulation by hydrolysing metal salts', Adv. Colloid. Interf. Sci, 100-102, 475 (2003)
  10. J. A. Lee, S. H. Lee, M. H. Jo, P. K. Park, C. H. Lee, and J. W. Kwak, 'Effect of coagulation conditions on membrane filtration characteristics in coagulation- microfiltration process for water treatment', Environ. Sci. Technol., 34, 3780 (2000) https://doi.org/10.1021/es9907461
  11. T. Carroll, S. King, S. R. Gray, B. A. Bolto, and N. A. Booker, 'The fouling of microfiltration membranes by NOM after coagulation treatment', Water Res., 34, 2861 (2000) https://doi.org/10.1016/S0043-1354(00)00051-8
  12. K. Y. J. Choi and B. A. Dempsey, 'In-line coagulation with low-pressure membrane filtration', Water Res., 38, 4271 (2004) https://doi.org/10.1016/j.watres.2004.08.006
  13. K. K. Malgorzata, 'Application of ultrafiltration integrated with coagulation for improved NOM removal', Desalination, 174, 13 (2005) https://doi.org/10.1016/j.desal.2004.08.037
  14. K. K. Malgorzata, 'Impact of pre-coagulation on ultrafiltration process performance', Desalination, 194, 232 (2006) https://doi.org/10.1016/j.desal.2005.09.031
  15. J. J. Qin, M. H. Oo, K. A Kekre, F. Knops, and P. Miller, 'Reservoir water treatment using hybrid coagulation-ultrafiltration', Desalination, 193, 344 (2006) https://doi.org/10.1016/j.desal.2005.04.148
  16. P. K. Park, C. H. Lee, S. J. Choi, K. H. Choo, S. H. Kim, and C. H. Yoon, 'Effect of the removal of DOMs on the performance of a coagulation-UF membrane system production for drinking water production', Desalination, 145, 237 (2002) https://doi.org/10.1016/S0011-9164(02)00418-6
  17. X. Tan, N. N. Kyaw, W. K. Teo, and K. Li, 'Decolorization of dye-containing aqueous solutions by the polyelectrolyte-enhanced ultrafiltration (PEUF) process using a hollow fiber membrane module', Sep. Purif. Technol., 52, 110 (2006) https://doi.org/10.1016/j.seppur.2006.03.028
  18. R. Thiruvenkatachari, W. G. Shim, J. W. Lee, R. B. Aim, and H. Moon, 'A novel method of powdered activated carbon (PAC) pre-coated microfiltration (MF) hollow fiber hybrid membrane for domestic wastewater treatment', Colloid Surf. APhysicochem. Eng. Asp., 274, 24 (2006) https://doi.org/10.1016/j.colsurfa.2005.08.026
  19. R. Fabris, E. Y. Lee, C. W. K. Chow, V. Chen, and M. Drikas, 'Pre-treatments to reduce fouling of low pressure micro-filtration (MF) membranes', J. Membr. Sci., 289, 231 (2007) https://doi.org/10.1016/j.memsci.2006.12.003
  20. W. S. Guo, S. Vigneswaran, H. H. Ngo, and H. Chapman, 'Experimental investigation of adsorption- flocculation-microfiltration hybrid system in wastewater reuse', J. Membr. Sci., 242, 27 (2004) https://doi.org/10.1016/j.memsci.2003.06.006
  21. S. Mozia and M. Tomaszewska, 'Treatment of surface water using hybrid processes adsorption on PAC and ultrafiltration', Desalination, 162, 23 (2004) https://doi.org/10.1016/S0011-9164(04)00023-2
  22. L. C. Koh, W. Y. Ahn, and M. M. Clark, 'Selective adsorption of natural organic foulants by polysulfone colloids: Effect on ultrafiltration fouling', J. Membr. Sci., 281, 472 (2006) https://doi.org/10.1016/j.memsci.2006.04.030
  23. R. Thiruvenkatachari, W. G. Shim, J. W. Lee, and H. Moon 'Effect of powdered activated carbon type on the performance of an adsorption-microfiltration submerged hollow fiber membrane hybrid system', Korean J. Chem. Eng., 21, 1044 (2004) https://doi.org/10.1007/BF02705591
  24. T. W. Ha, K. H. Choo, and S. J. Choi, 'Effect of chlorine on adsorption/ultrafiltration treatment for removing natural organic matter in drinking water', J. Colloid Interface Sci. 274, 587 (2004) https://doi.org/10.1016/j.jcis.2004.03.010
  25. C.-F. Lin, S.-H. Liu, and O. J. Hao, 'Effect of functional groups of humic substances on uf performance', Water Res. 35, 2395 (2001) https://doi.org/10.1016/S0043-1354(00)00525-X
  26. C.-F. Lin, Y.-J. Huang, and O. J. Hao, 'Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment', Water Res. 33, 1252 (1999) https://doi.org/10.1016/S0043-1354(98)00322-4
  27. K. W. Lee, K. H. Choo, S. J. Choi, and K. Yamamoto, 'Development of an integrated iron oxide adsorption/membrane separation system for water treatment', Water Sci. Technol. Water Supply, 2, 293 (2002)
  28. X. Zhu, K. H. Choo, and J. M. Park, 'Nitrate removal from contaminated water using polyelectrolyte- enhanced ultrafiltration', Desalination, 193, 350 (2006) https://doi.org/10.1016/j.desal.2005.06.067
  29. S. C. Han, K. H. Choo, S. J. Choi, and M. M. Benjamin, 'Modeling manganese removal in chelating polymer-assisted membrane separation systems for water treatment', J. Membr. Sci., 290, 55 (2007) https://doi.org/10.1016/j.memsci.2006.12.022
  30. M. Drouiche, V. Le Mignot, H. Lounici, D. Belhocine, H. Grib, A. Pauss, and N. Mameri, 'A compact process for the treatment of olive mill wastewater by combining UF and UV/$H_2O_2$ techniques', Desalination, 169, 81 (2004) https://doi.org/10.1016/j.desal.2004.08.009
  31. S. Chiron, A. Fernandez-Alba, A. Rodriguez, and E. Gareia-Calvo, 'Pesticide chemical oxidation: state-of-the-art', Water Res., 34, 366 (2000)
  32. F. J. Benıtez, J. L. Acero, A. I. Leal, and F. J. Real, 'Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters', J. Hazard. Mater., (2007), doi:10.1016/j.jhazmat.2007.07.007
  33. S. A. Lee, K. H. Choo, C. H. Lee, H. I. Lee, T. Hyeon, W. Choi, and H. H. Kwon, 'Use of ultrafiltration membranes for the separation of $TiO_2$ photocatalysts in drinking water treatment', Ind. Eng. Chem. Res., 40, 1712 (2001) https://doi.org/10.1021/ie000738p
  34. J. Ryu, W. Choi, and K. H. Choo, 'Photocatalystmembrane hybrid reactor: performance and characterization', Water Sci. Technol., 51, 491 (2005)
  35. K. H. Choo, H. Lee, and S. J. Choi, 'Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment', J. Membr. Sci., 267, 18 (2005) https://doi.org/10.1016/j.memsci.2005.05.021
  36. K. W. Park, K. H. Choo, and M. H. Kim, 'Use of a combined photocatalysis/microfiltration system for natural organic matter removal', Membr. J., 14, 149 (2004)
  37. J. H. Kim, W. J. Na, B. S. Kim, and M. Kim, 'Chiral separation of tryptophan by immobilized BSA (bovine serum albumin) membrane', Membr. J., 16, 133 (2006)
  38. P. M. Claesson, E. Poptoshev, E. Blomberg, and A. Dedinaite, 'Polyelectrolyte-mediated surface interactions', Adv. Colloid Interface Sci., 114-115, 173 (2005)
  39. M. Ullner and C. E. Woodward, 'Orientational correlation function and persistence lengths of flexible polyelectrolytes', Macromolecules, 35, 1437 (2002) https://doi.org/10.1021/ma010863s
  40. P. Linse, 'Adsorption of weakly charged polyelectrolytes at oppositely charged surfaces', Macromolecules, 29, 326 (1996) https://doi.org/10.1021/ma950539v
  41. O. Rojas, M. Ernstsson, R. D. Neuman, and P. M. Claesson, 'X-ray photoelectron spectroscopy in the study of polyelectrolyte adsorption on mica and cellulose', J. Phys. Chem. B, 104, 10032 (2000) https://doi.org/10.1021/jp001674z
  42. O. Rojas, M. Ernstsson, R. D. Neuman, and P. M. Claesson, 'Effect of polyelectrolyte charge density on the adsorption and desorption behavior on mica', Langmuir, 18, 1604 (2002) https://doi.org/10.1021/la0155698
  43. X. Wang, D. Fang, K. H. Yoon, B. S. Hsiao, and B. Chu, 'High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold', J. Membr. Sci., 278, 261 (2006) https://doi.org/10.1016/j.memsci.2005.11.009
  44. A. V. R. Reddy, D. J. Mohan, A. Bhattacharya, V. J. Shah, and P. K. Ghosh, 'Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties', J. Membr. Sci., 214, 211 (2003) https://doi.org/10.1016/S0376-7388(02)00547-1
  45. S. C. Han, K. H. Choo, S. J. Choo, and M. M. Benjamin, 'Removal of manganese from water using combined chelation/membrane separation systems', Water Sci. Technol., 51, 349 (2005)
  46. W. Xi, W. Rong, L. Zhansheng, A. G. Fane, 'Development of a novel electrophoresis-UV grafting technique to modify PES UF membranes used for NOM removal', J. Membr. Sci., 273, 47 (2006) https://doi.org/10.1016/j.memsci.2005.11.049