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ABSTRACT

In this paper, we observe that secure tweakable permutation families in the sense of strong pseudorandom permutation
(SPRP) can be transformed to secure permutation families in the sense of SPRP against related-key attacks (SPRP-RKA).
This fact allows us to construct a secure SPRP-RKA which is the most efficient to date. We also observe that secure
function families of a certain form in the sense of a pseudorandom function (PRF) can be transformed to secure
permutation families in the sense of PRP-RKA. We can exploit it to get various secure constructions against related-key
attacks from known MAC algorithms. Furthermore, we define other security notions for related-key attacks, namely
indistinguishability and non-malleability, and look into the relations between the security notions for related-key attacks.
We show that secure tweakable permutation families in the sense of indistinguishability (resp. non-malleability) can
be transformed to secure permutation families in the sense of indistinguishability (resp. non-malleability) against
related-key attacks.
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I. Introduction

In 1992 and 1993, Knudsen"” and Biham™ in-
dependently introduced a very useful cryptanalytic
technique which exploits related keys in a differential
attack. After this kind of attack, called a related-key
attack, was introduced, it has been widely used to
evaluate the security of block ciphers“’”'”"sl. The re-
lated-key attack has been also extended into various
cryptanalytic techniques such as a related-key differ-
ential-linear attack’”, a related-key impossible differ-
ential attack"'"
tangle attacks

, a related-key boomerang and rec-
514 and so on. Related-key attacks are
well-known to be very powerful tools to analyze block
ciphers. Up to now, the best (in terms of the number
of attacked rounds) known attacks against AES"®,
KASUMI®, XTEA"® and GOST"® are related-key
attacks. Furthermore, related-key attacks can be used
to evaluate the security of message authentication
schemes and block cipher based enciphering modes
(refer to (3] as an example).

The related-key attack is very difficult or even in-
feasible to conduct in many cryptographic applica-
tions, since it would certainly be unlikely that an at-
tacker could persuade a sender to encrypt plaintexts
under related keys unknown to the attacker. However,
as demonstrated in [12], the related-key attack is fea-
sible in some of the current real-world applications
such as the IBM 4758 cryptoprocessor, key-exchange
protocols that do not guarantee key integrity, and
key-update protocols that updates session keys using
a known function.

Related-key attacks allow an adversary to obtain
plaintext and ciphertext pairs by using different, but
related keys. The general aim of these attacks is to
retrieve some or all portions of the related keys by
using collected plaintext and ciphertext pairs. However,
the success or failure of these attacks is determined
by whether or not the adversary can distinguish the
underlying cipher from a random permutation family
with the same key space and plaintext/ciphertext
space as those of the underlying cipher. Hence, from
a theoretical point of view, the distinguishing ability

of the most powerful related-key adversary de-
termines the security of the underlying cipher against
related-key attacks. More precisely, if a cipher £ (or
E E ') and a randomly chosen permutation family G
(or G, @) are indistinguishable under related-key at-
tack models, we then say that E is secure in the sense
of a pseudorandom permutation (PRP) (or a strong
pseudorandom permutation (SPRP)) against re-
lated-key attacks (RKA), simply, we say that £ is a
secure PRP-RKA (or SPRP-RKA) cipher.

Compared to cryptanalytic results on related-key
attacks there are few theoretical results on them. In
2003, Bellare and Kohno! first initiated a theoretical
investigation of security against related-key attacks. In
(3], they defined a general model of related-key at-
tacks (i.e., classes of related-key attacks which are
specified by an associated set of key transformations)
together with some security notions for these attacks
such as PRP-RKA, SPRP-RKA and PRF-RKA. They
also clarified what classes of these attacks do or do
not allow to achieve security against them (for any ci-
phers there exist classes of related-key attacks against
which they are not secure). They also gave a con-
struction of secure PRP-RKA cipher. In (21] Lucks
proposed another construction of secure PRP-RKA ci-
pher that has a better security bound than that of (3].

The first goal of this paper is to construct various
secure permutation families against some classes of
related-key attacks from constructions which are al-
ready known to be secure. The second goal of this
paper is to define various security notions for re-
lated-key attacks and to show the relationships of
those security notions.

In this paper, we observe that secure tweakable
permutation families in the sense of SPRP can be
transformed to secure permutation families in the
sense of SPRP-RKA, and secure function families of
a certain form in the sense of PRF can be trans-
formed to secure permutation families in the sense of
PRP-RKA. This enables us to construct various
SPRP-RKA or PRP-RKA ciphers from known design
methods. Especially, we present a construction of se-
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cure SPRP-RKA cipher which is more efficient than
the mentioned above two secure PRP-RKA ciphers.
Furthermore, we define other security notions for re-
lated-key attacks, indistinguishability and non-malle-
ability, and look into the relations between the se-
curity notions for related-key attacks. At the end of
this paper, we show that secure tweakable permuta-
tion families in the sense of indistinguishability (resp.
non-malleability) can be transformed to secure per-
mutation families in the sense of indistinguishability
(resp. non-malleability) against related-key attacks.
This paper is organized as follows: Section 2 provides
some notations and security notions for related-key
attacks. In Sect. 3 and Sect. 4, we observe that various
secure permutation families against some classes of
related-key attacks can be constructed from constructions
which are already known to be secure. Section 5 de-
fines various security notions for related-key attacks
and shows the relationships of those security notions

and Sect. 6 concludes the paper.
II. Preliminaries

In this section, we present some notation and defi-
nitions which are used throughout the paper. We
adopt the notation of (3).

2.1. Notation

. siS: the operation of selecting ¢ uniformly at
random from the set S

* F KXD—R: a family of functions from D to
R indexed by keys K, ie., F,(-) is a function
from D to R for each kEKX

* E: KX D—D: a family of permutations on [ in-
dexed by K, ie., E.(-)8 is a permutation on [
for each key kEK

o BE: KXTXD-D: a family of permutations on [
indexed by KX T, ie., Elt, -) is a permutation
on ] for each key k€K and tweak t&T (Note

that 7 is not secret information.)
» Perm(D): the set of all permutations on D

+ Perm(K,D): the set of all families of permuta-
tions with domain D and keys K

» Rand(D, R): the set of all functions from D to R

 Rand(K,D,R): the set of all families of functions
with domain D, range R and keys K

In this paper, we call 7 a function family. We also
call E and E a permutation family and a tweakable
permutation family, respectively. According to the
above notations, G—Perm(K,D) represents the se
lection of a random permutation family, i.e., for each
key k€K, G,(-) is a permutation randomly chosen
from Perm{D). Furthermore, G§—Band(K,D,R) repre
sents the selection of a random function family, i.e.,
for each key k€K, G,(-) is a function randomly
chosen from Rand(D,R).

2.2. Definitions

Many security notions have been introduced for
function and permutation families; in these notions,
an adversary A is modeled as a Turing machine that
has black-box access to an oracle (or multiple ora-
cles). While the computational power of A4 is un-
limited, the total number of oracle calls is limited to
a certain number. For each query of A the oracle
gives an answer to A. After making a limited number
of queries to the oracle(s) adaptively, 4 outputs a bit.
Sections 3 and 4 considers below four security
notions. Some other security notions will be offered
in Sect. 5.

Definition 1. (PRF) (2] Let F: KxD—R be a func-
tion family and A be an adversary. Then the prf-ad-
vantage of A is defined by

Adiz! (A) =Pr bk 4™ = 1]

—Pr [giHmd(D,R) s 490 =1,

A°%) means A with an oracle O(-), which re-
turns O(M) for the adversary's query M.
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Definition 2. (SPRP) (22] Let E: KX D—D be a per-
mutation family and A4 be an adversary. Then the

sprp-advantage of A is defined by

AdviI™ (4) =Pr ok 4 BB )

—Pr Lquerm(D) s A9¢ ) = 1].

ACC)07) means A with two oracles
O(-),07( - ); for an adversary's query of M (resp.
O) to the first (resp. second) oracle it returns O(M)

(resp. O~HO).

Definition 3. (TWEAK-SPRP) (8) Let E: K< T D—D be
a tweakable permutation family and 4 be an adversary.
Then the tweak-sprp-advantage of A is defined by

Adtesk o572 (4) = Pr [k AP IEC )2y
—Pr[aﬁ—Perm(fD):Aa("')’le("')=1].
A0 007 ) means A with two oracles

O+, )0+, ) for an adversary's query of (t,1)
(resp. (¢,C)) to the first (resp. second) oracle it re-

turns O, M) (resp. b‘:l(t,C)).

Definition 4. (SPRP-RKA) (3] Let F KxD—Dbe a
permutation family and ¢ be a set of functions over

K.Let A be an adversary that is restricted to quer-
ies of the form (¢, ) in which ¢€& and zED. Then
the sprp-rka advantage of A is defined by

Advg’)g—rka(A) =Pr [k‘iK AERM-J:)( - DBz (- )= 1]

—Pr [k‘iK, G‘iPerm(K,D) : 4G )Gl ) —q)

A0ma(10mC) meang A with two oracles
Opri(-1(* ) Ogx(.(+); for an adversary's query of
(¢, M) (resp. (¢,O)) to the first (resp. second) oracle
it returns O,y (M) (resp. O (O)).

The PRP-RKA security notion™ is defined by re-
moving the decryption oracle in Definition 4. This

will be used in Sect. 4.

M. From Secure Tweakable SPRP Families to
Secure SPRP-RKA Families

Bellare and Kohno propose a construction method
of secure PRP-RKA family (Proposition 9.1 of [3]}).
In their security proof there are two ways to complete
it: one is a direct proof which was concretely de-
scribed in (3], and the other one is an indirect proof,
i.e., it is based on the relationship between tweakable
PRP families and PRP-RKA families (the second
proof was sketched in (3]). In a formal statement,
this proof can be naturally extended into the SPRP

security notion.

Theorem 1. Let Z: Kx TX DD be a tweakable per-
mutation family and let E: (KX T)xD—D be a per-
mutation family defined as £, (M) = E,(t, M) where k
is a secret key in K t is either a tweak value in T
of E or a secret key in 7 of E, and M is a message
in D. If Eis a secure tweakble SPRP, then Z is a se-
cure SPRP with respect to @-restricted RKAs if each
function @ in & is a partial transformation for which
there exists a function ¢ :7—>7T such that
#(k,t) = (k,¢' (t)). Formally, given a SPRP-RKA ad-
versary A attacking £, we can construct a
TWEAK-SPRP adversary B, attacking E such that

AdvFE~m(4) < Adve 7P (B,)

and B, takes the same amount of time and makes the

same number of oracle queries as 4.

Using Theorem 1 and Theorem 2 of {19], we can
construct a secure SPRP-RKA family which is the most
efficient to date. See Proposition 1 for the details. In
Proposition 1, a set H of functions with domain 7 and
range D is said to be e-almost 2-xor universal ( €
-AXU2) if Pr, [h(z)®h(y) =2] < e for all z,5,2(19) ,
where Pr,[] is the probability over the function h.

Proposition 1. Let E: K< D—D be a permutation fam-
ily, let H: 7D be an e—AXU, family with e > 1/|0)
and let E : (KX TX H) X D—D be another permutation
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family defined as E,,, (M) = E (MDh(t))Dh(t)
where (k,t,h) is a secret key in AKX T H, and M is
a message in D. If £ is a secure SPRP and H is
e— AXU, where ¢ is negligible, then £ is a secure
SPRP with respect to ®-restricted RKAs when each
function ¢ in @ is a partial transformation for which
function ¢ :7—>T such that
é(k,t,h) = (k,¢'(t),h). Formally, given a SPRP-RKA
adversary A attacking F' that queries its oracles with

there exists a

at most g queries, we can construct a SPRP adversary
B, attacking F such that

AdvZp™mre(4) < Advif"? (B,) +3ed

and B, takes the same amount of time and makes the

same number of oracle queries as A.
M

L K

Ki— E 1

ke —ED oL

K. E

¢ M k- =

{(Construction A} (Construction B)

K— E

(Construction C)

[Fig. 1) Comparison of the construction (C) of
Proposition 1 and the previous ones (A,B)

Figure 1 compares the construction of Proposition 1
with the previous ones. Note that Constructions A
and B calls two block ciphers while Construction C
does one block cipher and one e-almost 2-xor univer-
sal function which is implemented faster than a block
cipher. It follows that Construction C is more efficient
than the other two constructions. See (3,21]) for the

concrete security bounds of Constructions A and B.

Theorem 1 can be also exploited to construct vari-
ous secure permutation families from tweakable enci-
phering modes which are already known to be secure.
The security of tweakable enciphering modes CMCm,
EME®, BME*"” is based on the security of the un-
derlying block ciphers. In CMC, EME, EME*, if the
tweaks of CMC, EME, EME* are modified into parts
of keys, then the modified enciphering modes with
fixed-length messages, i.e., the modified permutation
families are secure against any &-restricted re-
lated-key attack under the assumption that the under-
lying block ciphers are secure and the functions of ¢
only transform the modified key portions.

IV. From Secure PRF Families of a Certain
Form to Secure PRP-RKA Families

This section shows that secure PRF families of a
certain form can be transformed into secure
PRP-RKA families. Before showing it, we give a
tighter bound of the PRF-RKA/PRP-RKA switching
Proposition 8.9 in (3).

Lemma 1. Let A4 be a related-key adversary that
queries its oracle with at most r different key trans-

formations from fixed ¢ and at most ¢ times per
transformation. Then

|Pr [k;s—K, G‘iﬂmd(K,D,D) . 4 Crtn() )

~Prb i @ E Perm (K D) : %m0 =1
_rog (¢ min{r,NMz}—1)
= 210 ,

where NM, =max, e NEP: ¢(k) =K.
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Proof. From Proposition 8.9 in [3) we know that

{Pr {kiK, GiRand(K,D,D) . AGmeat) = q)

—Pr [k;s;K, GiPerm(K,D) Al ) o 1l
< Prg{E],

where Pr,.; repre;ents the probability in the
experiment k—K G Rand(K,D,D), A=) and
D represents the event that, for each related-key that
A accesses to its oracle (i.e., ¢(k) where A queries
(¢, M) to its oracle), there are no collisions in the re-
sponses of the oracle for different messages. In (3],
Bellare and Kobno showed that

req+ NM - (q- NMy—1)
2.0 )

Pr g[D] <
However, we can bound Pr,[D] more tightly.

Let ¢, ¢y ¢ (' <7) be transformations in &
that A queries. Without loss of generality, we assume
that ¢, (k) == ¢, (k) =kp, &, 1 (k) ==, ., (k) =y,
(k) =k

""¢a,+---+am_,(k) =Ty b ot m

where a +-+a,_;+a, =1 and k=k; for
1< j<j <m. Since queties at most g times per key
transformation, for each k, the probability of a colli
sion in the output of the oracle on distinct inputs is

egela cg—1
%@l (this bound follows from

Proposition A.1 in (2]). Furthermore, each ¢ is at
most min {r’, NM}. Thus Pr g[f)] is bounded as follows.

at most

g +q- (g - q—1)
2-10
o -q-(q- min{r',Nl%}—l)
4 210
< q-(g- min{r,NM‘p}- 1)
- 2.0 ’

Pr, (D] <
1

u-MS

fon

N
M=

i

~5

Using Lemma 1 we can easily show Theorem 2.

Theorem 2. Let E: (K, X K,) x D—D be a permutation
family and let 7: K; < (&, X D)—D be a function fam-
ily defined as 7, (k1) =E, (M) where k is a se-
cret key in K, k, is either a secret key in K, of £ or
a message in K, of F, and M is a message in D. If
F is a secure PRF, then F is a secure PRP with re-

spect to @-restricted RKAs if each function & in & is
a partial transformation for which there exists a func-
tion ¢ :K—K, such that ¢(k,k)= (k¢ (k).
Formally, given a PRP-RKA adversary A attacking £
that queries its oracle with at most r different key
transformations and at most ¢ queries per trans-
formation, we can construct a PRF adversary B, at-
tacking F such that

Adem ™ (4) < AdY (B,)
reg-(q- min{r,NMq;}—l)
210

and B, takes the same amount of time and makes the

same number of oracle queries as A.

Proof. Let B, be the F adversary that works as

follows.

<Adversary B>

1. Select &, at random from X,.

2. Obtain  A's request (¢(= (id,¢')), ) by running A.

3. Return O(¢'(k,)IM) to A.

4. If A outputs b, then output b. Otherwise, go to
Step 2.

When B, is given access to F, A computes £ with
related keys. So the following equality holds:

R F AN
Pel(ly ) T, X AT 40 <1
When B, is given access to G where G is ran-
domly chosen from Rand(K,xD,D), B, teplies to A

using an independently selected random function on
D for each ¢'(k,). So the equation

Pr [Gé-l-?zmd(Kz xD,D): B )=1]=

Pr [(kl,kz)ilq X&,Gﬁﬂam(zq x K, D,D):

holds. Therefore, by using the above two equations
and Lemma 1,
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Adr ke(4) =Pr )k J 47 )

$ $ 2 Cria g () _
—Pr [(K,, K, )= K, > K, G=Rand(K, % K, D,D): 4 =1
+Pr (kb )2k X Ky G2 Rand (i, x 16, DD) : 45V =]

—Prllhy k) K % B, G2 Porm (K, x kg, D) A 040 =)

r-q- (g minr,NM;—1)

< Advi/ (B)+ 5TI00

Theorem 2 can be exploited to construct various per-
mutation families from MAC algorithms which are al-
ready known to be secure in the sense of PRF. Consider
for example OMAC with fixed-length inputs, if ail
message blocks except for the first one are modified
into parts of keys, then the modified permutation
family is secure against any $-restricted related-key
attack under the assumption that the underlying block
cipher is secure in the sense of PRP and functions in

@ only transform the modified key portions.

V. Relationships between Security Naotions

In this section, we introduce some other security
notions that give more information on permutation
families and then clarify their relations. We first give a
definition of indistinguishability, which is the same as
the left-or-right security notion of Bellare et al. {1).

Definition 5. (TWEAK-IND) (8) Let E: Kx TX D—D
be a tweakable permutation family and A be an
adversary. Then the tweak-ind advantage of 4 is de-
fined by

Agszen=nd(4) = pr kg 4BCOEC o)
Cprlpd g AT MRy

A% PO )b(b=0 or 1)

means A with two oracles -, - )",57‘( N
for an adversary's query of ((Z},4),(7;,24)) (resp.
(T3, ¢),(1;,6))) to the first (resp. second) oracle it

returns b(’J;,M) (resp. 5:1(72,65)).

Similarly, the IND-RKA security notion can be de-
fined as follows.

Definition 6. (IND-RKA) Let E: KX DD be a per-
mutation family and & be a set of functions over K.
Let A be an adversary that is restricted to queries

within @ x.D. Then the ind-rka advantage of 4 is de-
fined by

Advidjx:%—rka (4)=Pr [kﬁ“K 4 Bat-n (e M Brig-n{ ) 1]

—Pr [kﬁK AEM-,k)( VB n(- ) _ 1.

A %m0 =0 or 1) means A with two
oracles Opy(.(+ )% Opgc.y(+ ) ; for an adversary's
query of ((¢,,04),(8,,24)) (resp. (4, G)(¢1,G))) 10
the first (resp. second) oracle it returns O, ) (34)

(resp. G, (IK) Q).

Note that the tweak-ind adversary and the ind-rka
adversary should be disallowed from asking queries
that will allow it to win trivially. In the IND-RKA se-
curity notion, when the ind-rka adversary gets an an-
swer C from the encryption oracle for a quety
(69, M), (¢, M,)), the adversary should be disallowed from
asking queries (¢, 24),(+, )}, or ((+, - ).(¢p, 7))
to the encryption oracle and queries ((¢y,C)( -, - )),
or ((-,-)(¢,C) to the decryption oracle, where
(+,+) represents an arbitrary argument. The similar
argument is applied when the ind-rka adversary gets
an answer Jf from the decryption oracle for a query
({¢0: G (61, G)). See (8) for the disallowed queries
of a tweak-ind adversary.

We now consider another security notion, non-
alleability. In a tweakable permutation family
B Kx TxD—D, a tweak-nm adversary A4 is given ac-
cess to an encrypting oracle E(-,-) and a decrypt-
ing oracle JE;? (., -) where kK is chosen uniformly at
random from the set of keys A. In order to define the
advantage of a tweak-nm adversary 4 we need defi-
nitions of the following three sets.

- M(t): a set of all & such that 4 asks Ek( o)

to encrypt (t,M) or A asks E '+, ) to de-
crypt (¢,0) and its answer is M.

- )

. a set of all C such that4 asks & '(-,-)
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to decrypt (t,C) or A asks E(-,-) to encrypt
(t,M) and its answer is C.

- Mt,0 : a set E;v‘(t,c) if c=C(t), and a set
D—Mt) otherwise.

Definition 7. (TWEAK-NM) (8) Let B Kx TX D—D
be a tweakable permutation family and A be an
adversary. Then the tweak-nm advantage of A is de-
fined by

Ad,utl_}ueak— nm (A)
— el &, oS ARy B0 ) =1)

—ee ik, oS AR MBS a0y s =1,

The function f is the encoding of a predicate
f:D—0,1.

Similarly, we can define non-malleability of a per-
mutation family E:AxD—D against related-key
attacks. In related-key attack models, an nm-rka ad-
versary A is given access to an encrypting oracle
Bpi(. »(+) and a decrypting oracle Epx(. x(+)
where K is chosen uniformly at random from the set

of keys K. In these attack models, A is restricted
to queries of the form (¢, x) in which ¢ is in a cer-

tain set of key transformations & and z is in D. The

three sets are defined as follows.

- M(g) : a set of all M such that A asks Epy(. ()
to encrypt (¢,M) or A asks Epg(. () to decrypt
(¢, O and its answer is M.

- O($) : aset of all Csuch that 4 asks Egg(. (+)
to decrypt (4,C) or A asks Epg(. () to en-
crypt (¢, M) and its answer is C.

- M$,0) : a set By}, (O) if C=EC(4), and a set
D— M(¢) otherwise.

Definition 8. (NM-RKA) Let E: KX D—D be a per-
mutation family and & be a set of functions over A.
Let A be an adversary that is restricted to queries

within #xD. Then the nm-rka advantage of A is
defined by

Adiym m(4)
—pe K (6, CNE AT Bl () M= By (O): () =1]

—pr i (9, G AT DB 1S a0 £(3) = 1),

The function f is the encoding of a predicate
f:D—0,1.

The following three theorems clarify the relation-
ships between these newly defined security notions
IND-RKA, NM-RKA and the SPRP-RKA security
notion. Theorem 3 shows that SPRP-RKA security
implies IND-RKA security and Theorem 4 shows the
converse. Theorem 5 shows that SPRP-RKA security
implies NM-RKA

security. The proofs of Theorems 3, 4, 5 are similar

to the proofs of {8}, so we omit them.

Theorem 3. Let E: KX D—D be a permutation family
and & be a set of functions over K. If E is secure in
the sense of SPRP-RKA restricted to @, then E is also
secure in the sense of IND-RKA restricted the &.
Formally, given a &-restricted IND-RKA adversary A
that queries its oracles with at most ¢ queries, we can
construct a &-restricted SPRP-RKA adversary B,
such that

. 2.
Adipy T (4) <2 AdFE T (B + 15— i) fzq

and B, takes almost same amount of time and makes

the same number of oracle queries as 4.

Theorem 4. Let E: Kx D—D be a permutation family
and & be a set of functions over K. If [ is secure
in the sense of IND-RKA restricted to &, then E is
also secure in the sense of SPRP-RKA restricted the
&. Formally, given a &-restricted SPRP-RKA adver-
sary A that queries its oracles with at most ¢ queries,
we can construct a @-restricted IND-RKA adversary
B, such that

AdvZ™ T (4) < Adv§ S (B,)

and B, takes almost same amount of time and makes

the same number of oracle queries as A.
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Theorem 5. Let E: KX D—D be a permutation family
and & be a set of functions over X. If E is secure in
the sense of SPRP-RKA restricted to &, then Z is al-
so secure in the sense of NM-RKA restricted the &.
Formally, given a &-restricted NM-RKA adversary 4
that queries its oracles with at most ¢ queries, we can
construct a &-restricted SPRP-RKA adversary B,
such that

Adm e (4) < AdoE~TH(B,)

and B, takes almost same amount of time as 4 and

makes one more query than A.

The following two theorems show that secure
TWEAK-IND (resp. TWEAK-NM) families can be
transformed into secure IND-RKA (resp. NM-RKA)

families.

Theorem 6. Let B Kx T< D—D be a tweakable per-
mutation family and let E: (X T)xD—D be a per-
mutation family defined as in Theorem 1. If Eis se-
cure in the sense of TWEAK-IND, then E is secure
in the sense of IND-RKA restricted to ¢ if each func-
tion % is a partial transformation for which there
exists a function ¢ : 7~>T such that ¢(k,t) = (k¢ (t)).
Formally, given a &-restricted IND-RKA adversary 4
attacking &, we can construct a TWEAK-IND adver-
sary B, attacking E such that

AdU;TdE_rka(A) < Advtz\:veak—ind(BA)

and B, takes the same amount of time and makes the

same number of oracle queries as 4.

Proof. Let B, be the E adversary that works as
follows.

<Adversary>
1. Select t at random from T.
2. Obtain A's request ((¢04)(¢,04)) (or
(9 Q)+ (¢1, C))) by rumning A4, where ¢, = (id,¢'; )
and ¢, = (id¢',).

3. Return O(¢,(t),M4) (or O (¢,(¢),G)) to A.
4. If A4 outputs ¥, then output b'. Otherwise, go to

Step 2.

Since the adversary B, is given access to

E(-, +) B (-, - )" where g is randomly chosen
from K, B, computes Ep(. wio(* o Brac. win(* )
by running A. So the equality

Pribdac BEC PR Py
e LR B

holds. This completes the proof.

Theorem 7. Let B KX T D—D be a tweakable per-
mutation family and let &: (K< T)xD~D be a per-
mutation family defined as in Theorem 1. If E is se-
cure in the sense of TWEAK-NM, then F is secure
in the sense of NM-RKA restricted to & if each func-
tion ¢=& is a partial transformation for which there
exists a function ¢ : 7—T such that ¢(kt) = (k¢ (£)).
Formally, given a &-restricted NM-RKA adversary A
attacking E, we can construct a TWEAK-NM adver-
sary B, attacking F such that

AT (4) < Ade=mm (B,)

and B, takes the same amount of time and makes the

same number of oracle queries as A.

Proof. Let B, be the E adversary that works as
follows.

<Adversary>
1. Select ¢ at random from 7.
2. Obtain A's request (¢ (=(id,¢ )),M) (or
(¢'(=(id,¢™)),C)) by running A.
3. Return O(g”(t), M) (or O~ ¢" (), O)) to A.
4. If A outputs (¢(=(id,¢')), Gf), then output
(¢ (¢),Cf). Otherwise, go to Step 2.
Since the adversary B, is given access to E(-,-),

E:':v (., - )where k is chosen uniformly at random
from K, B, computes
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A% % g5 A

Epx(. i+ )sBrg(. apy(+) by running A. So it is
easy to see that

Adv tuzuk nm(B )

= Px[b—K,thT(qs( (id,8')), G ) & B D),
M=E ' (£),0): f(M) = 1]

e & T (g (= (id,9)), ) S P Mk,

MEM (), 0): F) = 1).

Since f(E ¢ (£),) =1 if and only if
F(Bybe (C) =1, the equality

PrlbS K T (= (), O AT 0,

M=E'¢®),0): f(a)=1]
=Pl e Dol ), NS ATl M FR ),
M= By (O): f (M) =1]

holds. Furthermore, for all ¢=(id,¢') and C M(¢'(t),O)
of B, takes the same distribution with Mg, C) of
A and thus the equation

Pr kKt 1 (9= (id, ), 01 S Focsa V)
MM (0,0 f () = 1]
— P atE T (= 9D, Gy T,

MEmp,0): fan) = 1]

holds. This completes the proof.

V1. Conclusion

We have presented a SPRP construction that is se-
cure against related-key attacks (SPRP-RKA) from a
tweakable SPRP, which is the most efficient to date.
We have also improved a bound for the PRF-RKA
/PRP-RKA switching proposition, which provides a
tighter security bound for constructing PRP-RKA ci-
phers from PRF of a certain form. Our observations
can stimulate the design and analysis of SPRP (or
PRP) that are secure against related-key attacks.
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