Characterization of Poly(styrene-b-vinylbenzylphosphonic acid) Copolymer by Titration and Thermal Analysis

  • Kim, Sang-Hun (Center for Advanced Functional Polymers, Department of Fiber & Polymer Engineering, Hanyang University) ;
  • Park, Young-Chul (Center for Advanced Functional Polymers, Department of Fiber & Polymer Engineering, Hanyang University) ;
  • Jung, Gui-Hyun (Center for Advanced Functional Polymers, Department of Fiber & Polymer Engineering, Hanyang University) ;
  • Cho, Chang-Gi (Center for Advanced Functional Polymers, Department of Fiber & Polymer Engineering, Hanyang University)
  • Published : 2007.10.31

Abstract

Well defined amphiphilic diblock copolymers of poly(styrene-b-vinylbenzylphosphonic acid) (PS-b-PVBPA) were prepared by controlled radical polymerization technique, two-step hydrolysis reactions using trime-thylsilyl bromide from the corresponding phosphonic ethyl ester. By indirect, backward pH titration of the block copolymer, a good titration curve of a dibasic acid was observed. The IEC values obtained from both backward pH titration and volumetric back titration were almost identical. Thermal gravimetric analysis (TGA) of the phosphonic acid containing block copolymer showed a high thermal stability up to $400^{\circ}C$.

Keywords

References

  1. I. H. Park, J. M. Rhee, and Y. S., Jung, Angew. Makrom. Chem., 267, 27 (1999)
  2. S. D. Alexandratos and S. D. Smith, J. Appl. Polym. Sci., 91, 463 (2004) https://doi.org/10.1002/app.13131
  3. B. L. Rivas, E. Pereira, P. Gallegos, D. Homper, and K. E. Geckeler, J. Appl. Polym. Sci., 92, 2917 (2004) https://doi.org/10.1002/app.20246
  4. B. L. Rivas and E. Pereira, Macromol. Symp., 193, 237 (2003) https://doi.org/10.1002/masy.200390056
  5. A. W. Trochimczuk and J. Jezierska, Polymer, 41, 3463 (2000)
  6. M. Sedlak and H. Coelfen, Macromol. Chem. Phys., 202, 587 (2001) https://doi.org/10.1002/1521-3935(20010101)202:1<1::AID-MACP1>3.0.CO;2-L
  7. S. H. Yu, H. Coelfen, and M. Antonietti, Chem. Eur. J., 8, 2937 (2002)
  8. E. J. Blanchard and E. E. Graves, Tex. Res. J., 73, 22 (2003) https://doi.org/10.1177/004051750307300104
  9. M. Banks, J. R. Ebdon, and M. Johnson, Polymer, 34, 4547 (1993)
  10. M. Schuster, T. Rager, A. Noda, K. D. Kreuer, and J. Maier, Fuel Cells, 5, 355 (2005) https://doi.org/10.1002/fuce.200400059
  11. S. Kotov and D. Burton, J. Fluorine Chem., 82, 13 (1997) https://doi.org/10.1016/S0022-1139(96)03534-8
  12. K. Jakoby, K. V. Peinemann, and S. P. Nunes, Macromol. Chem. Phys., 204, 61 (2003) https://doi.org/10.1002/macp.200290066
  13. M. Yamada and I. Honma, Polymer, 46, 2986 (2005) https://doi.org/10.1016/j.polymer.2005.02.056
  14. A. K. Bhattacharya and G. Thyagarajan, Chem. Rev., 81, 415 (1981)
  15. B. Liu, G. P. Robertson, M. D. Guiver, Z. Shi, T. Navessin, and S. Holdcroft, Macromol. Rapid Comm., 27, 1411 (2006) https://doi.org/10.1002/marc.200600337
  16. K. Miyatake and A. S. Hay, J. Polym. Sci.; Part A: Polym. Chem., 39, 3770 (2001) https://doi.org/10.1002/1099-0518(20010101)39:1<1::AID-POLA10>3.0.CO;2-B
  17. R. Souzy, B. Ameduri, B. Boutevin, and D. Virieux, J. Fluorine Chem., 125, 1317 (2004) https://doi.org/10.1016/j.jfluchem.2003.11.007
  18. P. Jannasch, Fuel Cells, 5, 248 (2005) https://doi.org/10.1002/fuce.200400051
  19. H. R. Allcock, M. A. Hofmann, and R. M. Wood, Macromolecules, 34, 6915 (2001) https://doi.org/10.1021/ma002404h
  20. H. R. Allcock, M. A. Hofinann, C. M. Ambler, and R. V. Morford, Macromolecules, 35, 3484 (2002) https://doi.org/10.1021/ma011278u
  21. H. R. Allcock, M. A. Hofinann, C. M. Ambler, S. N. Lvov, X. Y. Zhou, E. Chalkova, and J. Weston, J. Membrane Sci., 201, 47 (2002)
  22. T. Sata, T. Yoshida, and K. Matsusaki, J. Membrane Sci., 120, 101 (1996)
  23. D. Markova, A. K. Kumar, K. Muellen, and M. Klapper, Prepr. Am. Chem. Soc. Div. Fuel Chem., 51, 651 (2006)
  24. B. Boutevin, Y. Hervaud, A. Boulahna, and M. E. Asri, Macromolecules, 35, 6511 (2002) https://doi.org/10.1021/ma011278u
  25. G. R. Kieczykowski, R. B. Jobson, D. G. Melillo, D. F. Reinhold, V. J. Grenda, and I. Shinkai, J. Org. Chem., 60, 8310 (1995)
  26. G. H. Li, S. H. Kim, C. G. Cho, T. J. Park, and Y. Kim, Macramol Res., 14, 504 (2006) https://doi.org/10.1007/BF03218716
  27. O. Tsutsumi and R. Yamamoto, WO2005082964A1 (to Ebara Corp.) (2005)
  28. A. Britze, K. Moosmann, E. Jaehne, H. J. Adler, and D. Kuckling, Macromol. Rapid Comm., 27, 1906 (2006) https://doi.org/10.1002/marc.200600538
  29. G. H. Li, C. H. Lee, Y. M. Lee, and C. G. Cho, Solid State Ionics, 177, 1083 (2006) https://doi.org/10.1016/j.ssi.2006.03.003
  30. C. G. Cho, Y. G. You, H. Y. Jang, J. K. Woo, and S. K. An, J. Nanosci. Nanotechnol, 6, 3665 (2006) https://doi.org/10.1166/jnn.2006.078
  31. G. C. Daul, J. D. Reid, and R. M. Reinhardt, Ind. Eng. Chem., 46, 1042 (1954) https://doi.org/10.1021/ie50533a037
  32. J. Zou, Y. Zhao, and W. Shi, J. Membrane Sci., 245, 35 (2004) https://doi.org/10.1016/j.memsci.2004.07.015
  33. B. Smitha, S. Sridhar, and A. A. Khan, Macromolecules, 37, 2233 (2004) https://doi.org/10.1021/ma0355913
  34. C. J. Hawker and J. L. Hedrick, Macromolecules, 28, 2993 (1995)
  35. R. G. Lopez, C. Boisson, F. D' Agosto, R. Spitz, F. Boisson, D. Bertin, and P. Tordo, Macromolecules, 37, 3540 (2004) https://doi.org/10.1021/ma049653g
  36. P. M. Kazmaier, K. Daimon, M. K. Georges, G. K. Hamer, and R. P. N. Veregin, Macromolecules, 30, 2228 (1997)
  37. D. Avci and A. Z. Albayrak, J. Polym. Sci.; Part A: Polym. Chem., 41, 2207 (2003) https://doi.org/10.1002/pola.10768
  38. J. Huang and K. Matyjaszewski, Macromolecules, 38, 3577 (2005) https://doi.org/10.1021/ma047564y
  39. D. D. Jiang, Q. Yao, M. A. McKinney, and C. A. Wilkie, Polym. Degrad. Stabil., 63, 423 (1999)
  40. R. R. Holmes, R. O. Day, Y. Yoshida, and J. M. Holmes, J. Am. Chem. Soc., 114, 1771 (1992)
  41. M. Cochez, M. Ferriol, J. V. Weber, P. Chaudron, N. Oget, and J. L. Mieloszynski, Polym. Degrad. Stabil., 70, 455 (2000)
  42. B. Lafitte and P. Jannasch, J. Polym. Sci.; Part A: Polym. Chem., 45, 269 (2007) https://doi.org/10.1002/pola.21755
  43. L. D. Freedman and G. O. Doak, Chem. Rev., 57, 479 (1957)
  44. S. Yanagimachi, K. Kaneko, Y. Takeoka, and M. Rikukawa, Synth. Met., 135, 69 (2003) https://doi.org/10.1016/S0379-6779(02)00540-4