Synthesis and Nonlinear Optical Properties of Novel Y-Type Polyesters with Enhanced Thermal Stability of Second Harmonic Generation

  • Kim, Jin-Hyang (Institute of Functional Materials, Department of Chemistry, Inje University) ;
  • Lee, Ju-Yeon (Institute of Functional Materials, Department of Chemistry, Inje University) ;
  • Won, Dong-Seon (Institute of Functional Materials, Department of Chemistry, Inje University) ;
  • Rhee, Bum-Ku (Department of Physics, Sogang University)
  • Published : 2007.10.31

Abstract

2,3-Di-(2'-hydroxyethoxy)-4'-nitrostilbene (3) was prepared and condensed with terephthaloyl chloride, adipoyl chloride, and sebacoyl chloride to yield novel Y-type polyesters (4-6) containing the NLO-chromophores 2,3-dioxynitrostilbenyl groups, which constituted parts of the polymer backbones. Polymers 4-6 were soluble in common organic solvents such as acetone and N,N-dimethylformamide. Polymers 4-5 showed thermal stability up to $300^{\circ}C$ in thermogravimetric analysis with glass transition temperatures $(T_g)$, obtained from differential scanning calorimetry, in the range $81-95^{\circ}C$. The second harmonic generation (SHG) coefficients $(d_{33})$ of the poled polymer films at the 1064 nm fundamental wavelength were around $3.68{\times}10^{-9}$ esu. The dipole alignment exhibited high thermal stability up to $T_g$, and there was no SHG decay below $T_g$ due to the partial main-chain character of the polymer structure.

Keywords

References

  1. D. M. Burland, R. D. Miller, and C. Walsh, Chem. Rev., 94, 31 (1994)
  2. T. J. Marks and M. A. Ratner, Angew. Chem. Int. Ed. Engl., 34, 155 (1995) https://doi.org/10.1002/anie.199501551
  3. K. R. Yoon, H. Lee, B. K. Rhee, and C. Jung, Macromol. Res., 12, 581 (2004) https://doi.org/10.1007/BF03218447
  4. M. J. Cho, S. K. Lee, J.-I. Jin, and D. H. Choi, Macromol. Res., 14, 603 (2006) https://doi.org/10.1007/BF03218731
  5. M. Kato, T. Hirayama, H. Matsuda, M. Minami, S. Okada, and H. Nakanishi, Macromol. Rapid Commun., 15, 741 (1994)
  6. J. A. F. Boogers, P. T. A. Klaase, J. J. D. Vlieger, D. P. W Alkema, and A. H. A. Tinnemans, Macromolecules, 27, 197 (1994)
  7. M. Trollsas, C. Orrenius, F. Sahlen, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Largerwall, and J. Lindstrom, J. Am. Chem. Soc., 118, 8542 (1996)
  8. K. S. Han, S. K. Park, S. Y. Shim, W. S. Jahng, and N. J. Kim, Bull. Korean Chem. Soc., 19, 1165 (1998)
  9. K. S. Han, S. K. Park, S. Y. Shim, Y. S. Lee, W. S. Jahng, and N. J. Kim, Bull. Korean Chem. Soc., 19, 1168 (1998)
  10. D. Yu, A. Gharavi, and L. Yu, J. Am. Chem. Soc., 117, 11680 (1995)
  11. D. Yu, A. Gharavi, and L. Yu, Macromolecules, 29, 6139 (1996)
  12. N. Tsutsumi, M. Morishima, and W. Sakai, Macromolecules, 31, 7764 (1998)
  13. H. Y. Woo, H.-K. Shim, K.-S. Lee, M.-Y. Jeong, and T.-K. Lim, Chem. Mater., 11, 218 (2000)
  14. M. Ree, Macromol. Res., 14, 1 (2006) https://doi.org/10.1007/BF03219064
  15. J.-Y. Lee, W.-T. Jung, and W.-J. Lee, Polym. Int., 55, 248 (2006) https://doi.org/10.1002/pi.1965
  16. J. I. Cisneros, Appl. Opt., 37, 5262 (1998) https://doi.org/10.1364/AO.37.000998
  17. J. Jephagnon and S. K. Kurtz, J. Appl. Phys., 40, 1667 (1970)
  18. D. D. Singer, J. E. Sohn, and S. J. Lalama, Appl. Phys. Lett., 49, 248 (1986)
  19. W. N. Herman and L. M. Hayden, J. Opt. Soc. Am. B, 12, 416 (1995)
  20. N. M. Cullinane, J. Chem. Soc., 123, 2053 (1923)