국내 유통 콩의 지방함량 및 지방산 조성변이

Diversity in Lipid Contents and Fatty Acid Composition of Soybean Seeds Cultivated in Korea

  • Kim, Sun-Lim (National Institute of Crop Science, R.D.A) ;
  • Lee, Yeong-Ho (National Institute of Crop Science, R.D.A) ;
  • Chi, Hee-Youn (National Institute of Crop Science, R.D.A) ;
  • Lee, Sun-Joo (Department of Applied Life Science, College of Life and Environment Science, Konkuk University) ;
  • Kim, Si-Ju (National Institute of Crop Science, R.D.A)
  • 발행 : 2007.09.30

초록

우리나라에서 재배 생산된 콩을 지역별로 수집하여 단백질, 지방함량 및 지방산 조성의 변이를 구명하여 국내 콩 자원의 이용성을 증진하고 고품질의 국산콩 생산기반 구축 및 특산단지 조성을 위한 기초 자료로 활용하고자 본 시험을 수행한 결과를 하면 다음과 같다. 1 황색콩의 백립중은 $24.6{\sim}36.6$ g(평균 29.0g)이었고, 검정콩은 $27.7{\sim}33.1g$(평균 31.2 g)의 변이를 보였으나 백립중 편차의 폭이 커 국내 유통 콩의 크기가 매우 다양함을 알 수 있었다. 2. 검정콩 59종의 단백질 함량은 38.6%로서 황색콩 58종의 단백질 함량 37.9%보다 높았으나 지방함량은 황색콩이 18.1%로서 검정콩의 17.6%보다 높아 종피색에 따른 변이를 보였다. 3. 우리나라 지역별 수집콩 117종의 지방산의 수준은 linoleic > oleic > palmitic > linolenic > stearic > arachidic > myristic > benhenic acid 순으로 높았으며, linoleic acid가 53.75%, oleic acid가 22.08%로서 지방산조성의 약 75.83%에 해당되었다. 4. 불포화지방산 수준은 수집 지역간에 통계적 유의차가 있었으나 linoleic acid 및 oleic acid수준은 수집지역에 따른 변이가 통계적으로 유의차를 보이지 않아 불포화지방산의 지역간 수준 차이는 주로 linolenic acid의 변이에 기인한 것으로 판단되었다. 5. 황색콩의 linoleic, oleic, palmitic, linolenic acid의 조성은 각각 53.43%, 22.73%, 12.23% 및 8.24%였으나 검정콩은 54.13%, 21.48%, 12.47% 및 8.31%로 나타나 콩의 종피색에 따른 지방산 수준에 변이가 존재함을 알 수 있었다. 6. Oleic acid의 수준은 종피색에 따른 뚜렷한 변이를 보였으며 황색콩이 검정콩에 비하여 oleic acid의 조성비가 높게 분포되어 있었다. 7. 황색콩의 경우 백립중이 무거울수록 불포화지방산의 수준이 유의하게 감소되는 것으로 나타났으나(r=-0.513, P<0.01), 검정콩의 경우에는 백립중이 증가됨에 따라 불포화지방산의 수준이 증가되는 경향을 보였으나 통계적 유의성은 없었다.$(r=0.154^{ns}).$

The 117 soybeans seeds were collected from the nine provinces of Korea, and protein and lipid contents, and fatty acid composition levels were evaluated to investigate their relationship. The 100-seed weights of the black soybeans were varied $27.7{\sim}33.1g$, while the 100-seed weight of yellow soybeans were varied $24.6{\sim}36.6g$. Protein and lipid content of the 117 soybean seeds was 38.3% and 17.8%, respectively Protein contents of the 59 black soybean seeds (38.6%) were significantly higher than those of the 58 yellow soybean seeds (37.9%). However, lipid contents of the black soybean seeds (17.6%) were lower than those of the yellow soybean seeds (18.1%). Linoleic and oleic acid composition levels of the 117 soybean seeds were 53.75% and 22.08%. Unsaturated fatty acid levels of soybean seeds showed a statistically significant variability among the nine provinces of Korea, however, the differences were not found in the linoleic (18:2) and oleic acid (18:1) levels. Therefore, it was considered that the significant variability of unsaturated fatty acid were mainly due to the variations of linolenic acid (18:3) level. The composition levels of linoleic, oleic, palmitic (16:0), and linolenic acid in the yellow soybean seeds were 53.43%, 22.73%, 12.23%, and 8.24%, while those of the black soybean seeds were 54.13%, 21.48%, 12.47%, and 8.31%. Obtained results suggested that fatty acid composition levels were varied and possibly influence by the phenotype of seed coat colors. Oleic acid, mono-saturated fatty acid, showed the most remarkable variability between yellow and black soybean seeds, and the composition levels were higher in the yellow soybean seeds. Relationship between unsaturated fatty acid levels and 100-seed weights in the yellow soybean seeds showed a negative correlation (r=-0.513, P<0.01), but no relationship $(r=0.154^{ns})$ was observed in the black soybean seeds.

키워드

참고문헌

  1. Adhvaryu, A., S. Z. Erhan, and J. M. Perez. 2004. Preparation of soybean oil-based greases : Effect of composition and structure on physical properties J. Agric. Food Chem. 52 : 6456-6459 https://doi.org/10.1021/jf049888r
  2. Bilyeu, K. D., L. Palavalli, D. A. Sleper, and P. R. Beuselinck. 2003. Three microsomal omega-3 fatty-acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci. 43 : 1833-1838 https://doi.org/10.2135/cropsci2003.1833
  3. Britz, S. J. and J. F. Cavins. 1993. Spectral quality during pod development modulates soybean seed fatty acid desaturation. Plant Cell and Environ. 16 : 719-725 https://doi.org/10.1111/j.1365-3040.1993.tb00491.x
  4. Cahoon, E. B. 2003. Genetic enhancement of soybean oil for industrial uses : prospects and challenges. AgBioForum. 6 : 11-13
  5. Cheesebrough, T. M. 1989. Changes in the enzymes for fatty acid synthesis and desaturation during acclimation of developing soybean seed to altered growth temperature. Plant Physiol. 90 : 760-764 https://doi.org/10.1104/pp.90.2.760
  6. Cherry, J. H., L. Bishop, P. M. Hasegawa, and H. R. Leffler. 1985. Differences in the fatty acid composition of the soybean seed protein produced in northern and southern areas of the U.S.A. Phytochem. 24 : 237-241 https://doi.org/10.1016/S0031-9422(00)83527-X
  7. Choung, M. G. 2006. Variation of oil contents and fatty acid compositions in Korean soybean germplasms. J. Korean Crop Sci. 51(S) : 139-145
  8. Demirbas, A. 2007. Importance of biodiesel as transportation fuel. Energy Policy. 35 : 4661-4670 https://doi.org/10.1016/j.enpol.2007.04.003
  9. Fernando, S., P. Karra, R. Hernandez, and S. K. Jha. 2007. Effect of incompletely converted soybean oil on biodiesel quality. Energy 32 : 844-851 https://doi.org/10.1016/j.energy.2006.06.019
  10. Gibson, L. R. and R. E. Mullen. 1990. Soybean seed composition under high day night growth temperatures. J. Am. Oil Chem. Soc. 67: 966-973 https://doi.org/10.1007/BF02541859
  11. Howell, R. W. and F. I. Collins. 1957. Factors affecting linolenic and linoleic acid content of soybean oil. Agron. J. 49: 593-597 https://doi.org/10.2134/agronj1957.00021962004900110007x
  12. Kim, S. L., H. B. Kim, H. Y. Chi, N. K. Park, J. R. Son, H. T. Yun, and S. J. Kim. 2005. Variation of anthocyanins and isoflavones between yellow-cotyledon and green-cotyledon seeds of black soybean. Food Sci. Biotechnol. 14(6) : 778-782
  13. Kim, Y. H. 2002. Current achievement and perspectives of seed quality evaluation in soybean. Korean J. Crop Sci. 47(S) : 95-106
  14. Liu, K. S. 1999. Soybeans : Chemistry, technology, and utilization. Aspen Publishers Inc. pp. 25-114
  15. Mensink, R. P. and M. B. Katan. 1990. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. New Eng. J. Med. 323 : 439-445 https://doi.org/10.1056/NEJM199008163230703
  16. Neff, W. E. and G. R. List. 1999. Oxidative stability of natural and randomized highpalmitic-and high-stearic-acid oils from genetically modified soybean varieties. J. Am. Oil Chem. Soc. 76 : 825-831 https://doi.org/10.1007/s11746-999-0072-9
  17. Ohlrogge, J. B. and J. G. Jaworski. 1997. Regulation of fatty acid synthesis Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 : 109-136 https://doi.org/10.1146/annurev.arplant.48.1.109
  18. Ohtake, N., T. Kawachi, A. Sato, I. Okuyama, H. Fujikake, K. Sueyoshi, and T. Ohyama. 2001. Temporary application of nitrate to nitrogen-deficient soybean plants at the mid- to late-stages of seed development increased the accumulation of the ${\beta}$-subunit of ${\beta}$-conglycinin, a major seed storage protein. Soil Sci. Plant Nutr. 47 : 195-203 https://doi.org/10.1080/00380768.2001.10408382
  19. Rafael, G. and M. Mancha. 1993. One-step lipid extraction and fatty acid methyl ester preparation from fresh plant tissues. Analytical Biochemistry. 211 : 139-143 https://doi.org/10.1006/abio.1993.1244
  20. Rahman, S. M., T. Kinoshita, T. Anai, and Y. Takagi. 2001. Combining Ability in Loci for High Oleic and Low Linolenic Acids in Soybean Crop Sci. 41 : 26-29 https://doi.org/10.2135/cropsci2001.41126x
  21. Roberto, G. P., D. O. Cesar, L. O. Jorge, C. P. Paulo, E. F. Carlos, and E. P. Oscar. 2007. Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel. Renewable Energy. 32 : 2453-2460 https://doi.org/10.1016/j.renene.2006.05.007
  22. Shanmugasundaram, S. 2001. Current status and future prospects world soybean. In vegetable soybean, Proceeding in development strategy for self-production of soybean. pp. 1-16. National Honam Agricultural Experimental Station, RDA, Korea
  23. Spencer, M. M., D. Landau-Ellis, E. J. Meyer, and V. R. Pantalone. 2004., Molecular markers associated with linolenic acid content in soybean. J. Am. Oil Chem. Soc. 81 : 559-562 https://doi.org/10.1007/s11746-006-0941-4
  24. Wilson, R. F., T. C. Marquardt, W. P. Novitzky, J. W. Burton, J. R. Wilcox, and R. E. Dewey. 2001. Effect of alleles governing 16:0 concentration on glycerolipid composition in developing soybeans. J. Am. Oil Chem. Soc. 78 : 329-334 https://doi.org/10.1007/s11746-001-0264-5
  25. Wolf, R. B., J. F. Canvins, R. Kleiman, and L. T. Black. 1982. Effect of temperature on soybean seed constituents : oil, protein, moisture, fatty acids, amino acids, and sugars. J. Am. Oil Chem. Soc. 59 : 230-232 https://doi.org/10.1007/BF02582182
  26. Yoon, T. H., K. J. Im, and D. H. Kim. 1984. Fatty acid composition of lipids obtained from Korean soybean varieties. Korean J. Food Sci. Technol. 16(4) : 375-382