Cross-Tolerance and Responses of Antioxidative Enzymes of Rice to Various Environmental Stresse

  • Kuk, Yong-In (Department of Plant Biotechnology, Chonnam National University) ;
  • Shin, Ji-San (Department of Plant Biotechnology, Chonnam National University)
  • Published : 2007.09.30

Abstract

In order to examine the cross-tolerance of two chilling-tolerant cultivars (Donganbyeo and Heukhyangbyeo) and two chilling-susceptible cultivars (Hyangmibyeo and Taekbaekbyeo) to salt, paraquat, and drought, changes of physiological response and antioxidant enzymes were investigated. The seedlings were grown in a growth chamber until the 4-leaf stage. The seedlings were exposed to chilling at $5^{\circ}C$ for 3 days. For drought treatment, the seedlings were subjected to drought by withholding water from plants for 5 days. For paraquat study, plants were sprayed with $300{\mu}M$ paraquat. For the salt stress, the seedlings were transferred to the Hoagland's nutrient solution containing 0.6% (w/v) NaCl for 4 days. Chilling-tolerant cultivars showed cross-tolerant to other stresses, salt, paraquat, and drought in physiological parameters, such as leaf injury, chlorophyll a fluorescence, and lipid peroxidation. The baseline levels of antioxidative enzyme activities, catalase (CAT) and peroxidase (POX) activities in chilling-tolerant cultivars were higher than in the chilling-susceptible cultivars. However, there were no differences in ascorbate peroxidase (APX) and glutathione reductase (GR) activities between chilling-tolerant and -susceptible cultivars in untreated control. CAT activity in chilling-tolerant cultivars was higher than that in chilling-susceptible cultivars during chilling, salt, and drought treatments, but not during paraquat treatment. However, other antioxidative enzymes, APX, POX, and GR activities showed no significant differences between chilling-tolerant and -susceptible cultivars during chilling, salt, paraquat, and drought treatments. Thus, it was assumed that CAT contribute to cross-tolerance mechanism of chilling, salt, and drought in rice plants.

Keywords

References

  1. Amsellem, Z. M. Jansen, A. Dreisenaar, and J. Gressel. 1993. Developmental variability of photooxidative stress tolerance in paraquat-resistant Conyza. Plant Physiol. 103 : 1097-1106 https://doi.org/10.1104/pp.103.4.1097
  2. Aono, M., A. Kubo, H. Saji, K. Tanaka, and N. Kondo. 1993. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol. 34 : 129-135
  3. Basra, A. S. 2001. Crop responses and adaptations to temperature stress. pp. 1-34. In T.K. Prasad (ed.). Mechanisms of chilling injury and tolerance. Haworth Press Inc., New York
  4. Bishop, T., S. B. Powles, and G. Cornic. 1987. Mechanism of paraquat resistance in Hordeum glaucum. II. Paraquat uptake and translocation. Aust. J. Plant Physiol. 14 : 539-547
  5. Bowler, C. M., M. Van Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. 43 : 83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  6. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein-dye binding. Anal. Biochem. 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  7. Buege, J. A. and S. D. Aust. 1978. Microsomal lipid peroxidation. Methods Enzymol. 52 : 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  8. Burke, J. J., P. E. Gamble, J. L. Hatfield, and J. E. Quisenberry. 1985. Plant morphological and biochemical responses to field water deficit. I. Responses of glutathione reductase activity and paraquat sensitivity. Plant Physiol. 79 : 415-419 https://doi.org/10.1104/pp.79.2.415
  9. Butler, W. L. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 29 : 345-378 https://doi.org/10.1146/annurev.pp.29.060178.002021
  10. Chen, G. X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves : Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30 : 987-998
  11. Egley, G. H., R. N. Paul, Jr., K. C. Vaughn, and S. O. Duke. 1983. Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta 157 : 224-232 https://doi.org/10.1007/BF00405186
  12. Fadzillah, N. M., V. Gill, R. P. Pinch, and R. H. Burdon. 1996. Chilling, oxidative stress, and antioxidant responses in shoot cultures of rice. Planta 199 : 552-556
  13. Foyer, C. H., M. Lelandais, C. Galap, and K. J. Kunert. 1991. Effect of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97 : 863-872 https://doi.org/10.1104/pp.97.3.863
  14. Foyer, C. H., P. Descourvieres, and K. J. Kunert. 1994. Protection against oxygen radicals an important defense mechanism studied in transgenic plants. Plant Cell and Environment 17 : 507-523 https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  15. Fridovich, I. 1978. The biology of oxygen radicals. Science 201 : 875-880 https://doi.org/10.1126/science.210504
  16. Fuerst, E. P. and K. C. Vaughn. 1990. Mechanisms of paraquat resistance. Weed Technol. 4 : 50-156
  17. Guy, C. L. 1990. Cold acclimation and freezing stress tolerance : Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41 : 187-223 https://doi.org/10.1146/annurev.pp.41.060190.001155
  18. Halliwell, B. and J. M. C. Gutteridge. 1986. Oxygen free radicals and iron in relation to biology and medicine : Some problems and concepts. Arch. Biochem. Biophys. 246 : 501-514 https://doi.org/10.1016/0003-9861(86)90305-X
  19. Hideg, E. 1997. Free radical production in photosynthesis under stress conditions. pp. 911-930. In M. Pessarakli (ed.) Handbook of photosynthesis. Marcel Decker, New York
  20. Hodges, D. M, C. J. Andrews, D. A. Johnson, and R. I. Hamilton. 1997. Antioxidant enzyme responses to chilling stress on differentially sensitive inbread maize lines. J. Exp. Bot. 48 : 1105-1113 https://doi.org/10.1093/jxb/48.5.1105
  21. Hodgson, R. A. J. and J. K. Raison. 1991. Superoxide production by thylakoids during chilling and its implication in the susceptibility of plants to chilling induced photoinhibition. Planta 183 : 222-228
  22. Howarth, C. J. and H. J. Ougham. 1993. Gene expression under temperature stress. New Phytologist 125 : 1-26 https://doi.org/10.1111/j.1469-8137.1993.tb03862.x
  23. Hughes, M. A. and M. A. Dunn. 1996. The molecular biology of plant acclimation to low temperature. J. of Exp. Bot. 47 : 291-305 https://doi.org/10.1093/jxb/47.3.291
  24. Koscielnak, J. 1993. Effects of low night temperature on photosynthetic activity of maize seedlings (Zea mays L.). J. Agron. Crop Sci. 171 : 73-81 https://doi.org/10.1111/j.1439-037X.1993.tb00116.x
  25. Krause, G. H., T. M. Briantais, and C. Vernott. 1983. Characterization of chlorophyll fluorescence spectroscopy at 77 K. I. pH-dependent quenching. Biochem. Biophys. Acta 723 : 169-175 https://doi.org/10.1016/0005-2728(83)90116-0
  26. Kuk, Y. I., J. H. Lee, H. Y. Kim, S. J. Chung, G. C. Chung, J. O. Guh, H. J. Lee, and N. R. Burgos. 2003. Relationships of cold acclimation and anti oxidative enzymes with chilling tolerance in cucumber (Cucumis sativus L.). J. Amer. Soc. Hort. Sci. 128 : 661-666
  27. Kuk, Y. I. and J. S. Shin. 2007. Mechanisms of low-temperature tolerance in cucumber leaves of various ages. J. Amer. Soc. Hort. Sci. 132 : 1-8
  28. Lee, D. H. and C. B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber : In gel enzyme activity assays. Plant Sci. 159 : 75-85 https://doi.org/10.1016/S0168-9452(00)00326-5
  29. Madamanchi, N. R., X. Yu, A. Doulis, R. G. Alscher, K. K. Hatzios, and C. L. Cramer. 1994. Acquired resistance to herbicides in pea cultivars through pretreatment with sulphur dioxide. Pestic. Biochem. Physiol. 48 : 31-40 https://doi.org/10.1006/pest.1994.1004
  30. Malan C., M. M. Greyling, and J. Gressel. 1990. Correlation between CuZn superoxide dismuntase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci. 69 : 157-166 https://doi.org/10.1016/0168-9452(90)90114-4
  31. Markhart, A. H. III. 1986. Chilling injury : A review of possible causes. HortScience 21 : 1329-1333
  32. Matters, G. L. and J. G. Scandalios. 1986. Effect of elevated temperature on catalase and superoxide dismutase during maize development. Differentiation 30 : 190-196 https://doi.org/10.1111/j.1432-0436.1986.tb00780.x
  33. Michalski, W. P. and Z. Kaniuga. 1982. Photosynthetic apparatus of chilling sensitive plants : Reversibility by light of cold- and dark-induced inactivation of cyanide-sensitive superoxide dismutase activity in tomato leaf chloroplasts. Biochem. Biophys. Acta 680 : 250-257 https://doi.org/10.1016/0005-2728(82)90136-0
  34. Mishra, N. P., R. K. Mishra, and G. S. Singhal. 1993. Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves of strong visible light at different temperature in the presence of protein synthesis inhibitors. Plant Physiol. 102 : 903-910 https://doi.org/10.1104/pp.102.3.903
  35. Mostowska, A. 1997. Environmental factors affecting chloroplasts. pp. 407-426. In M. Pessarakli (ed.) Handbook of photosynthesis. Marcel Dekker, New York
  36. Oidaira, H., S. Satoshi, K. Tomokazu, and U. Takashi. 2000. Enhancement of antioxidant enzyme activities in chilled rice seedlings. Plant Physiol. 156 : 811-813 https://doi.org/10.1016/S0176-1617(00)80254-0
  37. Omran, R. J. 1980. Peroxide levels and the activities of catalase, peroxidase, and indole acetic acid oxidase during and after chilling cucumber seedling. Plant Physiol. 65 : 407-408 https://doi.org/10.1104/pp.65.2.407
  38. Perl- Treves, R. and E. Galun. 1991. The tomato Cu, Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol. Biol. 17 : 745-760 https://doi.org/10.1007/BF00037058
  39. Pinhero, R. G., M. V. Rao, G. Paliyath, D. P. Murr, and R. A. Fletcher. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol induced chilling tolerance of maize seedlings. Plant Physiol. 114 : 685-704
  40. Prasad, T. K. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance : Changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J. 10 : 1017-1026 https://doi.org/10.1046/j.1365-313X.1996.10061017.x
  41. Rao, M. V., G. Paliyath, and D. P. Ormrod. 1996. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110 : 125-136 https://doi.org/10.1104/pp.110.1.125
  42. Saltveit, M. E. and L. L. Morris. 1990. Overview of chilling injury of horticultural crops. pp. 3-15. In C. Y. Wang (ed.). Chilling injury of horticultural crops, CRC Press, Boca Raton, FL
  43. Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109 : 105-113 https://doi.org/10.1016/0168-9452(95)04156-O
  44. Scandalios, J. G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol. 101 : 7-12 https://doi.org/10.1104/pp.101.1.7
  45. Shaaltiel, Y., A. Glazer, P. F. Bocion, and J. Gressel. 1988. Cross-tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat, sulphur dioxide, and ozone. Pestic. Biochem. Physiol. 31 : 13-19 https://doi.org/10.1016/0048-3575(88)90024-7
  46. Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125 : 27-58 https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  47. Tanaka, Y., H. Chisaka, and H. Saka. 1986. Movement of paraquat in resistant and susceptible biotypes of Erigeron philadelphicus and E. Canadensis. Physiol. Plant 66 : 605-608 https://doi.org/10.1111/j.1399-3054.1986.tb05587.x
  48. Terashima, I., S. Funayama, and K. Sonike. 1994. The site of photo inhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photo system II. Planta 193 : 300-306
  49. Thomashow, M. F. 1990. Molecular genetics of cold acclimation in higher plants. Adv. Genet. 28 : 99-131 https://doi.org/10.1016/S0065-2660(08)60525-8
  50. Upadhyaya, A., T. D. Davis, R. H. Walser, A. B. Galbraith, and N. Sankhla. 1989. Uniconazole-induced alleviation of low-temperature damage in relation to antioxidant activity. HortScience 24 : 955-957
  51. Wang, C. Y. 1982. Physiological and biochemical responses of plant to chilling stress. HortScience 17 : 173-186
  52. Walker, M. A., B. D. Mckersie, and K. P. Pauls. 1991. Effects of chilling on the biochemical and functional properties of thylakoid membranes. Plant Physiol. 97 : 663-669 https://doi.org/10.1104/pp.97.2.663
  53. Wilson, D. 1976. The mechanism of chill-and drought-hardening of Phaseolus vulgaris. New Phytol. 76 : 257-260 https://doi.org/10.1111/j.1469-8137.1976.tb01459.x
  54. Wise, R. R. and A. W. Naylor. 1987. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 83 : 272-277 https://doi.org/10.1104/pp.83.2.272