References
- Amsellem, Z. M. Jansen, A. Dreisenaar, and J. Gressel. 1993. Developmental variability of photooxidative stress tolerance in paraquat-resistant Conyza. Plant Physiol. 103 : 1097-1106 https://doi.org/10.1104/pp.103.4.1097
- Aono, M., A. Kubo, H. Saji, K. Tanaka, and N. Kondo. 1993. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol. 34 : 129-135
- Basra, A. S. 2001. Crop responses and adaptations to temperature stress. pp. 1-34. In T.K. Prasad (ed.). Mechanisms of chilling injury and tolerance. Haworth Press Inc., New York
- Bishop, T., S. B. Powles, and G. Cornic. 1987. Mechanism of paraquat resistance in Hordeum glaucum. II. Paraquat uptake and translocation. Aust. J. Plant Physiol. 14 : 539-547
- Bowler, C. M., M. Van Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. 43 : 83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
- Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein-dye binding. Anal. Biochem. 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Buege, J. A. and S. D. Aust. 1978. Microsomal lipid peroxidation. Methods Enzymol. 52 : 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
- Burke, J. J., P. E. Gamble, J. L. Hatfield, and J. E. Quisenberry. 1985. Plant morphological and biochemical responses to field water deficit. I. Responses of glutathione reductase activity and paraquat sensitivity. Plant Physiol. 79 : 415-419 https://doi.org/10.1104/pp.79.2.415
- Butler, W. L. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 29 : 345-378 https://doi.org/10.1146/annurev.pp.29.060178.002021
- Chen, G. X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves : Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30 : 987-998
- Egley, G. H., R. N. Paul, Jr., K. C. Vaughn, and S. O. Duke. 1983. Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta 157 : 224-232 https://doi.org/10.1007/BF00405186
- Fadzillah, N. M., V. Gill, R. P. Pinch, and R. H. Burdon. 1996. Chilling, oxidative stress, and antioxidant responses in shoot cultures of rice. Planta 199 : 552-556
- Foyer, C. H., M. Lelandais, C. Galap, and K. J. Kunert. 1991. Effect of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97 : 863-872 https://doi.org/10.1104/pp.97.3.863
- Foyer, C. H., P. Descourvieres, and K. J. Kunert. 1994. Protection against oxygen radicals an important defense mechanism studied in transgenic plants. Plant Cell and Environment 17 : 507-523 https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
- Fridovich, I. 1978. The biology of oxygen radicals. Science 201 : 875-880 https://doi.org/10.1126/science.210504
- Fuerst, E. P. and K. C. Vaughn. 1990. Mechanisms of paraquat resistance. Weed Technol. 4 : 50-156
- Guy, C. L. 1990. Cold acclimation and freezing stress tolerance : Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41 : 187-223 https://doi.org/10.1146/annurev.pp.41.060190.001155
- Halliwell, B. and J. M. C. Gutteridge. 1986. Oxygen free radicals and iron in relation to biology and medicine : Some problems and concepts. Arch. Biochem. Biophys. 246 : 501-514 https://doi.org/10.1016/0003-9861(86)90305-X
- Hideg, E. 1997. Free radical production in photosynthesis under stress conditions. pp. 911-930. In M. Pessarakli (ed.) Handbook of photosynthesis. Marcel Decker, New York
- Hodges, D. M, C. J. Andrews, D. A. Johnson, and R. I. Hamilton. 1997. Antioxidant enzyme responses to chilling stress on differentially sensitive inbread maize lines. J. Exp. Bot. 48 : 1105-1113 https://doi.org/10.1093/jxb/48.5.1105
- Hodgson, R. A. J. and J. K. Raison. 1991. Superoxide production by thylakoids during chilling and its implication in the susceptibility of plants to chilling induced photoinhibition. Planta 183 : 222-228
- Howarth, C. J. and H. J. Ougham. 1993. Gene expression under temperature stress. New Phytologist 125 : 1-26 https://doi.org/10.1111/j.1469-8137.1993.tb03862.x
- Hughes, M. A. and M. A. Dunn. 1996. The molecular biology of plant acclimation to low temperature. J. of Exp. Bot. 47 : 291-305 https://doi.org/10.1093/jxb/47.3.291
- Koscielnak, J. 1993. Effects of low night temperature on photosynthetic activity of maize seedlings (Zea mays L.). J. Agron. Crop Sci. 171 : 73-81 https://doi.org/10.1111/j.1439-037X.1993.tb00116.x
- Krause, G. H., T. M. Briantais, and C. Vernott. 1983. Characterization of chlorophyll fluorescence spectroscopy at 77 K. I. pH-dependent quenching. Biochem. Biophys. Acta 723 : 169-175 https://doi.org/10.1016/0005-2728(83)90116-0
- Kuk, Y. I., J. H. Lee, H. Y. Kim, S. J. Chung, G. C. Chung, J. O. Guh, H. J. Lee, and N. R. Burgos. 2003. Relationships of cold acclimation and anti oxidative enzymes with chilling tolerance in cucumber (Cucumis sativus L.). J. Amer. Soc. Hort. Sci. 128 : 661-666
- Kuk, Y. I. and J. S. Shin. 2007. Mechanisms of low-temperature tolerance in cucumber leaves of various ages. J. Amer. Soc. Hort. Sci. 132 : 1-8
- Lee, D. H. and C. B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber : In gel enzyme activity assays. Plant Sci. 159 : 75-85 https://doi.org/10.1016/S0168-9452(00)00326-5
- Madamanchi, N. R., X. Yu, A. Doulis, R. G. Alscher, K. K. Hatzios, and C. L. Cramer. 1994. Acquired resistance to herbicides in pea cultivars through pretreatment with sulphur dioxide. Pestic. Biochem. Physiol. 48 : 31-40 https://doi.org/10.1006/pest.1994.1004
- Malan C., M. M. Greyling, and J. Gressel. 1990. Correlation between CuZn superoxide dismuntase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci. 69 : 157-166 https://doi.org/10.1016/0168-9452(90)90114-4
- Markhart, A. H. III. 1986. Chilling injury : A review of possible causes. HortScience 21 : 1329-1333
- Matters, G. L. and J. G. Scandalios. 1986. Effect of elevated temperature on catalase and superoxide dismutase during maize development. Differentiation 30 : 190-196 https://doi.org/10.1111/j.1432-0436.1986.tb00780.x
- Michalski, W. P. and Z. Kaniuga. 1982. Photosynthetic apparatus of chilling sensitive plants : Reversibility by light of cold- and dark-induced inactivation of cyanide-sensitive superoxide dismutase activity in tomato leaf chloroplasts. Biochem. Biophys. Acta 680 : 250-257 https://doi.org/10.1016/0005-2728(82)90136-0
- Mishra, N. P., R. K. Mishra, and G. S. Singhal. 1993. Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves of strong visible light at different temperature in the presence of protein synthesis inhibitors. Plant Physiol. 102 : 903-910 https://doi.org/10.1104/pp.102.3.903
- Mostowska, A. 1997. Environmental factors affecting chloroplasts. pp. 407-426. In M. Pessarakli (ed.) Handbook of photosynthesis. Marcel Dekker, New York
- Oidaira, H., S. Satoshi, K. Tomokazu, and U. Takashi. 2000. Enhancement of antioxidant enzyme activities in chilled rice seedlings. Plant Physiol. 156 : 811-813 https://doi.org/10.1016/S0176-1617(00)80254-0
- Omran, R. J. 1980. Peroxide levels and the activities of catalase, peroxidase, and indole acetic acid oxidase during and after chilling cucumber seedling. Plant Physiol. 65 : 407-408 https://doi.org/10.1104/pp.65.2.407
- Perl- Treves, R. and E. Galun. 1991. The tomato Cu, Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol. Biol. 17 : 745-760 https://doi.org/10.1007/BF00037058
- Pinhero, R. G., M. V. Rao, G. Paliyath, D. P. Murr, and R. A. Fletcher. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol induced chilling tolerance of maize seedlings. Plant Physiol. 114 : 685-704
- Prasad, T. K. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance : Changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J. 10 : 1017-1026 https://doi.org/10.1046/j.1365-313X.1996.10061017.x
- Rao, M. V., G. Paliyath, and D. P. Ormrod. 1996. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110 : 125-136 https://doi.org/10.1104/pp.110.1.125
- Saltveit, M. E. and L. L. Morris. 1990. Overview of chilling injury of horticultural crops. pp. 3-15. In C. Y. Wang (ed.). Chilling injury of horticultural crops, CRC Press, Boca Raton, FL
- Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109 : 105-113 https://doi.org/10.1016/0168-9452(95)04156-O
- Scandalios, J. G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol. 101 : 7-12 https://doi.org/10.1104/pp.101.1.7
- Shaaltiel, Y., A. Glazer, P. F. Bocion, and J. Gressel. 1988. Cross-tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat, sulphur dioxide, and ozone. Pestic. Biochem. Physiol. 31 : 13-19 https://doi.org/10.1016/0048-3575(88)90024-7
- Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125 : 27-58 https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
- Tanaka, Y., H. Chisaka, and H. Saka. 1986. Movement of paraquat in resistant and susceptible biotypes of Erigeron philadelphicus and E. Canadensis. Physiol. Plant 66 : 605-608 https://doi.org/10.1111/j.1399-3054.1986.tb05587.x
- Terashima, I., S. Funayama, and K. Sonike. 1994. The site of photo inhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photo system II. Planta 193 : 300-306
- Thomashow, M. F. 1990. Molecular genetics of cold acclimation in higher plants. Adv. Genet. 28 : 99-131 https://doi.org/10.1016/S0065-2660(08)60525-8
- Upadhyaya, A., T. D. Davis, R. H. Walser, A. B. Galbraith, and N. Sankhla. 1989. Uniconazole-induced alleviation of low-temperature damage in relation to antioxidant activity. HortScience 24 : 955-957
- Wang, C. Y. 1982. Physiological and biochemical responses of plant to chilling stress. HortScience 17 : 173-186
- Walker, M. A., B. D. Mckersie, and K. P. Pauls. 1991. Effects of chilling on the biochemical and functional properties of thylakoid membranes. Plant Physiol. 97 : 663-669 https://doi.org/10.1104/pp.97.2.663
- Wilson, D. 1976. The mechanism of chill-and drought-hardening of Phaseolus vulgaris. New Phytol. 76 : 257-260 https://doi.org/10.1111/j.1469-8137.1976.tb01459.x
- Wise, R. R. and A. W. Naylor. 1987. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 83 : 272-277 https://doi.org/10.1104/pp.83.2.272