Abstract
This paper proposes a novel iterative LMS-based decision feedback equalizer for short burst transmission with relatively short training sequence. In the proposed equalizer, the longer concatenated training sequence can provide the more sufficient channel information and the reused original training sequence can provide the correct decision feedback information. In addition, the overall adaptive processing is performed using the low complexity LMS algorithm. The study shows the performance of the proposed method is enhanced with the number of iterations and, furthermore, better than that of the conventional LMS-based DFEs with the training sequence of longer or equal length. Computational complexity is increased linearly with the number of iterations.