Moisture Sorption Isotherm Characteristics of Chaga Mushroom Powder as Influenced by Particle Size

  • Lee, Min-Ji (Department of Food Science and Engineering, Daegu University) ;
  • Lee, Jun-Ho (Department of Food Science and Engineering, Daegu University)
  • Published : 2007.02.28

Abstract

Adsorption isotherms for chaga mushroom powder as influenced by particle size were investigated using a gravimetric technique. Samples were equilibrated in desiccators containing sulfuric acid solutions of known water activity (0.11-0.93), then placed in temperature-controlled chambers for approximately ten days. Equilibrium moisture content (EMC) of chaga mushroom powder increased with water activity in all samples. EMC was slightly greater in the samples comprised of smaller particle size, however there was no marked difference in appearance between the three samples. The chaga mushroom powder exhibited Type II behavior. When the BET model was used to determine mean monolayer values, 0.077, 0.077, and 0.070 $H_2O/dry$ solid was observed for <250, 250-425, and $425-850\;{\mu}m$ sized samples, respectively, however mean monolayer values were 0.121, 0.111, and 0.101 $H_2O/dry$ solid, respectively, when the GAB model was used. The experimental EMC values were related to the computed values from Henderson's model. The coefficient of determination and standard error for the linear regression were 0.997 and 0.003, respectively.

Keywords

References

  1. Vinogradov E, Wasser SP. The structure of a polysaccharide isolated from lnonotus levis P. Karst. mushroom (Heterobasidiomycetes). Carbohyd. Res. 340: 2821-2825 (2005) https://doi.org/10.1016/j.carres.2005.09.024
  2. Cha JY, Jun BS, Yoo KS, Hahm JR, Coh YS. Fermented chaga mushroom (Inonotus obliquus) effect of hypolipidemia and hepatoprotection in otsuka long-evans tokushima fatty (OLETF) rats. Food Sci. Biotechnol. 15: 122-127 (2006)
  3. Cha JY, Jun BS, Kim JW, Park SH, Lee CH, Coh YS. Hypoglycemic effects of fermented chaga mushroom (Inonotus obliqus) in the diabectic otsuka long-evans tokushima fatty (OLETF) rat. Food Sci. Biotechnol. 15.: 739-745 (2006)
  4. Cui Y, Kim DS, Park KC. Antioxidant effect of Inonutus obliquus. J. Ethnopharmacol. 96: 79-85 (2005) https://doi.org/10.1016/j.jep.2004.08.037
  5. Kim YO, Han SB, Lee HW, Ahn HJ, Yoon YD, Jung JK, Kim HM, Shin CS. Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sci. 77: 2438-2456 (2005) https://doi.org/10.1016/j.lfs.2005.02.023
  6. Reid DA. Inonotus obliquus (Pers. Ex Fr.) pilat in Britain. T. Brit. Mycol. Soc. 67: 329-332 (1976) https://doi.org/10.1016/S0007-1536(76)80140-4
  7. Saar M. Fungi in Khanty folk medicine. J. Ethnopharmacol. 31: 175-179 (1991) https://doi.org/10.1016/0378-8741(91)90003-V
  8. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biot. 60: 258-274 (2002) https://doi.org/10.1007/s00253-002-1076-7
  9. Mizuno T, Zhuang C, Abe K, Okamoto H, Kiho T, Ukai S, Leclerc S, Meijer L. Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Per. Fr.) Pil. (Aphyllophoromycetideae). Int. J. Med. Mushrooms 1: 301-316 (1999) https://doi.org/10.1615/IntJMedMushr.v1.i4.20
  10. Ichimura T, Otake T, Mori H, Maruyama S. HIV-1 protease inhibition and anti-HIV effect of natural and synthetic water-soluble lignin-like substance. Biosci. Biotech. Bioch. 63: 2202-2204 (1999) https://doi.org/10.1271/bbb.63.2202
  11. Kahlos K. Antifungal activity of cysteine, its effect on C-21 oxygenated lanosterol derivatives and other lipid in Inonotus obliquus, in vitro. Appl. Microbiol. Biot. 3: 339-385 (1994)
  12. Solomon PW, Alexander LW. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Immunologia 19: 65-96 (1999)
  13. Kahlos K, Kangas L, Hiltunen R. Antitumor activity of some compounds and fractions from an n-hexane extract of Inonotus obliquus. Acta Pharm. Fennica 96: 33-40 (1987)
  14. Jarosz A, Skorska M, Rzymowska J, Kochmanska-Rdest J, Malarczyk E. Effect of the extracts from fungus Inonotus obliquus on catalase level on Hela and nocardia cells. Acta Biochim. Pol. 37: 149-151 (1990)
  15. Mizuno T. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. Int. J. Med. Mushrooms 1: 9-29 (1999) https://doi.org/10.1615/IntJMedMushrooms.v1.i1.20
  16. Kim YO, Park HW, Kim JH, Lee JY, Moon SH, Shin CS. Anticancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci. 79: 72-80 (2006) https://doi.org/10.1016/j.lfs.2005.12.047
  17. Kaymak-Ertekin F, Sultanoglu M. Moisture sorption isotherm characteristics of peppers. J. Food Eng. 47: 225-231 (2001) https://doi.org/10.1016/S0260-8774(00)00120-5
  18. Mok C, Hettiarachchy NS. Moisture sorption characteristics of ground sunflower nutmeat and its products. J. Food Sci. 55: 786-789 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb05231.x
  19. Gal S. The need for and practical application of sorption data. pp. 13-25. In: Physical Properties of Foods-2. Jowitt R, Escher F, Hallstrom B, Mefert H, Spiess W, Vos G (eds). Elsevier Applied Science, London, UK (1987)
  20. Mulet A, Garcia-Pascual P, Sanjuan N, Garcia-Reverter J. Equilibrium isotherms and isosteric heats of morel (Morchella esculenta). J. Food Eng. 53: 75-81 (2002) https://doi.org/10.1016/S0260-8774(01)00142-X
  21. Kaymak-Ertekin F, Gedik A. Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples, and potatoes. Lebensm. -Wiss. Technol. 37: 429-438 (2004) https://doi.org/10.1016/j.lwt.2003.10.012
  22. AOAC. Official Methods of Analysis. Method No. 934.06. Association of Official Analytical Chemists. Arlington, VA, USA (1996)
  23. SAS Institute, Inc. SAS User's Guide. version 6.12. Statistical Analysis System Institute, Cary, NC, USA (2000)
  24. Shivhare US, Arora S, Ahmed J, Raghavan GSV. Moisture adsorption isotherm for mushroom. Lebensm. -Wiss. Technol. 37: 133-137 (2004) https://doi.org/10.1016/S0023-6438(03)00135-X
  25. McMinn WAM, Magee TRA. Thermodynamic properties of moisture sorption of potato. J. Food Eng. 60: 157-165 (2003) https://doi.org/10.1016/S0260-8774(03)00036-0
  26. Ahmed J, Khan AR, Hanan AS. Moisture adsorption of an Arabian sweet (basbusa) at different temperatures. J. Food Eng. 64: 187-192 (2004) https://doi.org/10.1016/j.jfoodeng.2003.09.031
  27. Al-Muhtaseb AH, McMinn WAM, Magee TRA. Water sorption isotherms of starch powders. Part 1: Mathematical description of experimental data. J. Food Eng. 61: 297-307 (2004) https://doi.org/10.1016/S0260-8774(03)00133-X
  28. Khalloufi S, Glasson J, Ratti C. Water activity of freeze dried mushrooms and berries. Can. Agr. Eng. 42: 51-56 (2000)
  29. Youn KS. Absorption characteristics of green tea powder as influenced by particle size. J. Korean Soc. Food Sci. Nutr. 33: 1720-1725 (2004) https://doi.org/10.3746/jkfn.2004.33.10.1720
  30. McLaughlin CP, Magee TRA. The determination of sorption isotherm and the isosteric heats of sorption for potatoes. J. Food Eng. 35: 267-280 (1998) https://doi.org/10.1016/S0260-8774(98)00025-9
  31. Lopes Filho JF, Romanelli PF, Barbosa SHR, Gabas AL, TelisRomero J. Sorption isotherms of alligator's meat (Caiman crocodiles yacare). J. Food Eng. 52: 201-206 (2002) https://doi.org/10.1016/S0260-8774(01)00105-4
  32. Debnath S, Hemavathy J, Bhat KK. Moisture sorption studies on onion powder. Food Chem. 78: 479-482 (2002) https://doi.org/10.1016/S0308-8146(02)00161-9
  33. Iglesias HA, Chirife J. Isosteric heats of water vapour sorption on dehydrated foods. Part I: analysis of the differential heat curves. Lebensm. -Wiss. Technol. 9: 116-122 (1976)
  34. Iglesias HA, Chirife J. Isosteric heats of water vapour sorption on dehydrated foods. Part II: Hysteresis and heat of sorption comparison with BET theory. Lebensm. -Wiss. Technol. 9: 123-127 (1976)
  35. Labuza TP, Kaanane A, Chen JY. Effects of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. J. Food Sci. 50: 385-391 (1985) https://doi.org/10.1111/j.1365-2621.1985.tb13409.x
  36. Wang N, Brennan JG. Moisture sorption isotherm characteristics of potatoes at four temperatures. J. Food Eng. 14: 269-282 (1991) https://doi.org/10.1016/0260-8774(91)90018-N