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Abstract Five phenolic compounds 1-5 were isolated for the first time from the exudate of geminating peanut (Arachis
hypogaea). The structures were fully characterized by analysis of physical and spectral data. All isolated compounds were
tested for antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic
acid) (ABTS), and hydroxyl radical. Compounds 2, 3, and 5 exhibited a strong scavenging effect on DPPH (2: IC;, = 10.4
uM, 3: ICsp = 45.2 uM, 5: 1C5o = 5.0 uM), and ABTS (2: ICsy = 9.6 puM, 3: IC5p = 5.5 uM, S: IC5p = 3.3 uM) radical activity,
whereas these compounds had weak hydroxyl radical scavenging activity (ICso> 200 uM). The total phenolic contents of the
extracts using #-hexane, EtOAc, and n-BuOH were found to be 96.4-964.3 mg gallic acid equivalent per g dry material (GAE/
g) and #-BuOH fraction showed the highest total phenolic content (964.3 mg GAE/g). These studies suggest that the exudate
of geminating peanut may possess possible health related benefits to humans.
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Introduction

Arachis hypogaea L. (commonly known as the peanut)
has become one of the most important crops in many
countries during the past few decades and has also shown
antioxidant and antimutagen activities (1-5). As lower
rates of chronic hemorrhage, bronchitis, oxidation, and cancer
with higher intake of peanuts, the bioactive properties of
peanuts have been subjected to extensive investigation (4).
Although there are various phytochemicals belong to the
stilbene, flavanone, and proanthocyanidin families present
in peanuts, researchers mainly focused on compounds
found in the nuts rather than in the plant itself (6-10). It is
well established that various germinated plants contain
abundant secondary metabolites possessing biological
activity (11-13), but the elucidation of the biologically
active substance from the exudate of germinating peanut
has not been widely attempted. Thus, the evaluation of the
biological function of secondary metabolites in the peanut
and its germinating exudates are great importance not only
the value of the whole plant as a source of bioactive
materials but also that of peanut as dietary supplement.
Recently, in the course of our studies on bioactive natural
sources, we found that phenolic compounds from the
exudate of geminating peanut showed potent antioxidant
activity.

Antioxidants can be defined as compounds that delay or
prevent the oxidation of lipids or other molecules by
inhibiting the initiation or propagation of an oxidizing
chain reaction (14). Phenolic compounds are widely
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distributed in the plant kingdom including food products
as secondary metabolic products and nutraceutical importance
(15-18), which possess potent antioxidant properties and
free radical scavenging capabilities (16, 19). Also, it is-
well established that phenolic compounds are known to
exert various physiological effects in humans, such as
preventing oxidative damage of lipid and low-density lipo-
proteins (LDL) (20), anti-inflammatory and antimutagenetic
(21-23), and reducing the risk of coronary heart disease
and cancer (24, 25). Typically, phenolic compounds have
been tested using in vitro assays of antioxidant activity
before being tested in vivo in a biological system. The 1,1-
diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-
ethylbenzthiazoline-6-sulfonic acid) (ABTS) assays have
both been commonly used to measure the total antioxidant
status of various biological specimens because of their
high reproducibility and easy quality control (26, 27).
When an antioxidant is added to the radicals, there is a
degree of decolorization owing to the presence of the
antioxidant which reverses the formation of the ABTS and
DPPH radical. Also, hydroxyl radical plays a prominent
role in biological phenomena (28, 29) and undergoes
addition reactions with aromatic compounds leading to
specific hydroxylated products.

In this study, we isolated five phenolic compounds for
the first time from the exudate of germinating peanut and
identified their structures through spectral analysis. These
isolated compounds were also evaluated for their
antioxidant activity using DPPH, ABTS, and hydroxyl
radical scavenging assays. We also report that the total
phenolic contents of the extracts using n-hexane, EtOAc,
and »n-BuOH.
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Materials and Methods

Plant material Peanut was collected during September
12-15, 2004, in the experimental field of the Yeongnam
Agricultural Research Institute (YARI), National Institute
of Crop Science, Rural Development Administration,
Miryang, Korea. Peanut (12.0 kg) was cleaned and soaked
in 8.0 L of water for 7 days at room temperature.

Reagents Gallic acid, Folin-Ciocalteau’s phenol reagent,
DPPH, ABTS, sodium persulfate, 2-deoxy-D-ribose, butylated
hydroxyl anisol (BHA), and 6-hydroxy-2,5,7,8-tetramethyl-
chroman-2-carboxylic acid (Trolox) were purchased from
Sigma Chemical Co. (St. Louis, MO, USA).

Instruments The purity of all compounds were
monitored by thin layer chromatography (TLC; E. Merck
Co., Darmstadt, Germany), using commercially available
glass-backed plates and visualized under UV at 254 and
366 nm or sprayed with phosphomolybdic acid (PMA)
solution. Column chromatography was carried out using
230-400 mesh silica gel (Kieselgel 60, Merck, Germany).
Melting points were measured on a Thomas Scientific
capillary melting point apparatus (Electrothermal 9300,
Essex, UK) and are uncorrected. IR spectra were recorded
on a Bruker IFS66 (Bruker, Karlsruhe, Germany) infrared
Fourier transform spectrophotometer (KBr) and UV
spectra were measured on a Beckman DU650 spectro-
photometer (Beckman Coulter, Fullerton, CA, USA). 'H-
and “C-nuclear magnetic resonance (NMR) along with
2D-NMR data were obtained on a Bruker AM 500 (‘H-
. NMR at 500 MHz, *C-NMR at 125 MHz) spectrometer
(Bruker) in CD;0D and acetone-ds. Electron impact mass
spectroscopy (EIMS) was obtained on a JEOL JMS-700
mass spectrometer (JEOL, Tokyo, Japan). All the reagent
grade chemicals were purchased from Sigma.

Determination of total phenolic content Total phenolic
content was measured according to the modified Folin-
Ciocalteau colorimetric method (30, 31). Briefly, each
sample (1.0 mL) was mixed with Folin and Ciocalteu’s
phenol reagent (1.0 mL). After 5 min, 2 mL of 2% Na,COs
solution was added to the mixture and the volume brought
up to 10 mL by adding distilled water. After the reaction
mixture was kept in the dark for 2 hr, absorbance was
measured at 724 nm. The concentration of total phenolic
content in the extracts was calculated using the following
linear equation based on the calibration curve: y = 0.0026x-
0.00045, R? = 0.999, where, y was the absorbance and x
was the total phenolic contents in mg of gallic acid
equivalents (mg GAE/g extract).

DPPH radical scavenging activity Antioxidant activities
of crude compounds (or isolated compounds) were measured
on the basis of the scavenging activity of the stable DPPH
free radical following the method described by Braca ef al.
(32). Various concentrations of the compounds were added
to a concentration of 0.15 mM in EtOH, and the mixture
was shaken vigorously. Absorbance at 517 nm was
determined after 30 min, and the radical scavenging effect
was calculated as [A.-A/A ] x 100, where A, and A, were
the absorbance of samples with and without crude
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compounds (or isolated compounds), respectively.

Trolox equivalent antioxidant capacity (TEAC) scaveng-
ing activity The TEAC assay is based on the relative
ability of antioxidants to scavenge the radical cation
ABTS™ in comparison to a standard (Trolox) (33). The
radical cation was prepared by mixing 7 mM ABTS stock
solution with 2.45 mM potassium persulfate. The reaction
mixture was maintained for 4-8 hr until the mixture was
complete and the absorbance is stable. ABTS™ solution
was diluted with ethanol and the absorbance was read at
734 nm. For the photometric assay 0.9 mL ABTS™
solution and 0.1 mL compounds were mixed for 45 sec
and the absorbance measured immediately after 1 min at
734 nm. Antioxidant activity of each compound was
calculated by determining the decrease in absorbance at
different concentrations using the following equation: E =
[(AcA)/Ac] x 100, where A; and A, were absorbance of
samples with and without crude compounds (or isolated
compounds), respectively. Antioxidant activity was
expressed as TEAC values.

Hydroxyl radical scavenging activity Competition
between deoxyribose and crude compounds (or isolated
compounds) against hydroxyl radical generated from the
Fe**/ascorbic acid/EDTA/H,0, system were measured for
determination of hydroxyl radical scavenging activity (34).
The reaction mixture consisted of 10 mM KH,PO,/KOH
buffer (pH 7.4), 16.8 mM 2-deoxyribose, 300 mM FeCl,,
1.2 mM EDTA (ethylenediamine tetraacetic acid), 16.8
mM H,0, and crude compounds (or isolated compounds).
The reaction mixture was incubated at 37°C for 2 hr, and
then 1 mL of 1.0% TBA (thiobarbituric acid in 50 mM
NaOH) and 1 mL of 2.8% TCA (trichloroacetic acid) were
added to test tubes and boiled for 20 min. After cooling
the mixture, the absorbance was measured at 532 nm.
Hydroxyl radical scavenging activity was evacuated as the
inhibition rate of 2-deoxyribose oxidation by hydroxyl
radical and the radical scavenging effect was calculated as
[AA/A] x100, where A, and A, were absorbance of
samples with and without crude compounds (or isolated
compounds), respectively.

Extraction and isolation Peanut (12.0 kg) was cleaned
and soaked in 8.0 L of water for 7 days at room
temperature, and then the exudate of germinating water
was partitioned with n-hexane, EtOAc, and »-BuOH to
give n-hexane- (0.8 g), EtOAc- (1.2 g), and #-BuOH-
extractable (1.9 g) residues. Subsequent bioactivity-guided
fractionations of the EtOAc and #-BuOH extracts led to
five compounds (Fig. 3). First, the EtOAc phase (1.2 g)
was subjected to chromatography on silica gel (2.5%60 cm,
230-400 mesh, 120 g) using CHCls/acetone [20:1 (300
mL), 15:1 (300 mL), 10:1 (300 mL), 5:1 (300 mL), 1:1
(300 mL)] and CHCl;/MeOH [10:1 (150 mL), 5:1 (150
mL), 1:1 (150 mL)] mixtures to give fraction A (40 mg),
fraction B (120 mg), fraction C (65 mg), fraction D (220
mg), fraction E (200 mg), and fraction F (280 mg).
Fraction E was applied to a silica gel column (1.8%40 cm,
230-400 mesh, 60 g) and separated with CHCls/acetone
[10:1 (100 mL), 6:1 (80 mL), 3:1 (80 mL), 1:1 (80 mL)] to
afford 15 subfractions; subfractions 11-15 were subjected to
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silica gel column (1.2x30 cm, 230400 mesh, 30 g) chromato-
graphy with CHCly/acetone (8:1 — 1:2) to yield compound
3 (14 mg). Fraction F was subjected to silica gel column
(2.0%40 cm, 230-400 mesh, 75 g) chromatography with
CHCI3/MeOH (50:1 — 6:1) and then purified by a second
flash silica gel column (1.5%30 cm, 230-400 mesh, 45 g)
using a gradient of CHCl;/MeOH [40:1 (80 mL), 30:1 (80
mL), 20:1 (80 mL), 10:1 (830 mL), 5:1 (80 mL)] to yield
compounds 1 (9 mg) and 4 (15 mg). The BuOH phase was
separated on silica gel (2.8x60 cm, 230-400 mesh, 190 g)
using a gradient of CHCly/MeOH [20:1 (250 mL), 15:1
(200 mL), 10:1 (200 mL), 6:1 (200 mL), 3:1 (200 mL),
1:1 (200 mL)] to give fractions A-F. Fraction D (90 mg)
was repeatedly chromatographed over silica gel (1.0x30
cm, 230-400 mesh, 15 g) using CHCly/MeOH [10:1 (30 mL),
6:1 (30 mL), 3:1 (30 mL), 1:1 (30 mL)]} to give compound
2 (16 mg) and fraction E (75 mg) was separately subjected
to silica gel column (1.0%30 cm, 230-400 mesh, 12 g)
chromatography with the same solvent [12:1 (45 mlL),
10:1 (45 mL), 8:1 (45 mL), 4:1 (45 mL), 2:1 (45 mL})]
used for 2 and then purified by a second flash silica gel
column using a gradient of CHCly/MeOH to yield
compound 5 (17 mg).

Data analysis and curve fitting Each assay was
conducted in triplicate experiments. The data analysis was
performed by using Sigma Plot 2001. The inhibitory
concentration leading to 50% activity loss (ICs) was
obtained by fitting experimental data to the logistic curve
by the equation as follows (35).

Inhibition (%) = 100 [1/{1 + (ICsy/)}]

Results and Discussion

Total phenolic content The amount of total phenolics
were determined by n-hexane, EtOAc, and »-BuOH
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Fig. 2. Total phenolic contents of solvent fractions from the
exudate of germinating peanut. All values are mean+SD (n = 3).

fraction and ranged from 96.4 to 964.3 mg GAE/g of the
exudate germinating extracts of peanut. The highest total
phenolic levels were detected in »-BuOH fraction (964.3
mg GAE/g), followed by EtOAc fraction (943.7 mg GAE/
g) and hexane fraction (96.4 mg GAE/g) (Fig. 2). These
results suggested that higher extraction yields of phenolic
compounds were obtained with increasing polarity of the
solvent and potent antioxidant activity (36, 37).

Identification of active compounds In connection with
our studies on the screening of antioxidants from various
natural sources, we found that two fractions exhibited
significant antioxidant activities against DPPH (EtOAc:
ICsy = 17 ug/mL, n-BuOH: IC5o= 9 pg/mL), ABTS (EtOAc:
ICso= 5 ng/mL, n-BuOH: ICs, = 4 pug/mL), and hydroxyl
(EtOAc: ICso > 800 pg/mL, n-BuOH: IC5; > 800 pg/mL)
radicals (Fig. 3). Subsequently, silica gel chromatography
and bioassay-guided fractions of the EtOAc and n-BuOH
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Fig. 1. Isolation of antioxidant metabolites from peanut (Arachis hypogaea) germinating exudates.
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Fig. 3. Antioxidant effects of solvent fractions from the exudate of germinating peanut. A, DPPH radical scavenging activity; B,
ABTS radical scavenging activity; C, Hydroxyl radical scavenging activity. All values are meantSD (n = 3).

O

1 R =0CH;
2 R=0OH

Fig. 4. Structures of isolated compounds 1-5.

layers of peanut germinative extractions yielded five
phenolic acids, which were analyzed as physical and
spectroscopic data to determine their structures (Fig. 4).

Compound (1): amorphous white powder; mp 297-299°C;
EIMS m/z (relative intensity) 168 (M", 70), 151 (100), 152
(25); IR (KBr) Vi 3414, 1653, 157/cm; UV gy 305,
262 nm (MeOH); '"H NMR (500 MHz, CD;0D) & 3.91
(3H, s, OCH3), 6.86 (1H, d, J = 8.7 Hz, H-5), 7.57 (1H, 4,
J=1.9 Hz, H-2), and 7.58 (1H, dd, /= 1.9, 8.7 Hz, H-6).
13C NMR (125 MHz, CD;0D): see Table 1.

Compound (2): slightly yellow powder; mp 255-257°C;
EIMS m/z (relative intensity) 154 (M" 83), 137 (100), 109
(38), 81 (15), 63 (30); IR (KBr) Vma 3340, 1655/cm; UV
Amax 338, 272 nm (MeOH); 'H NMR (300 MHz, CD;OD)
5 6.89 (1H, d, J = 11.0 Hz, H-5), 7.52 (1H, dd, J = 2.1,
11.0 Hz, H-6), and 7.53 (1H, d, J = 2.1 Hz, H-2). °C
NMR (75 MHz, CD;0D): see Table 1.

Compound (3): yellow needles; mp 317-320°C; EIMS m/
z (relative intensity) 194 (M", 100), 178, (20), 177 (5); IR

(KBI) Viax 3412, 1645/cm; UV Ay 303, 259, 249, 238 -

Table 1. 3C-NMR of compounds 1-5 at 125 MHz (ppm, m)"

» Compound
Position
2 3 4 5

1 122.1(s) 121.7(s) 128.2(s) 1259 (s)

2 1128 (d) 1164 (d) 1122(d) 129.7(d) 147.9(s)
3 147.7(s) 144.6(s) 1498(s) 1154(d) 1374 (s)
4 151.7(s) 150.1(s) 1509(s) 159.7(s) 1773 (s)
5 1148(d) 1145(d) 1169(d) 1154(d) 162.6(s)
6 1243 (d) 122.8(d) 124.4(d) 129.7(d) 99.5(d)
7 169.0 (s) 169.2(s) 147.4(d) 1453 (d) 1657 (s)
8 1163 (d) 1142(d) 94.7(d)
9 1714 (s) 169.7(s) 1583 (s)
10 104.6 (s)
1 124.3 (s)
2 116.5 (d)
3 146.4 (s)
4 149.0 (s)
5 116.2 (d)
6 121.9 (d)

OCH; 554 (q) 56.9 (q)

YThe chemical shifts of compounds 1-4 were determined in CD;OD
and the chemical shifts of compound 5 was determined in CD;OD
and acetone-dj.

nm (MeOH); '"H NMR (500 MHz, CD;0D) § 3.88 (3H, s,
OCH3), 6.31 (1H, d, J = 15.9 Hz, H-8), 6.82 (1H, d, J =
8.2 Hz, H-5), 7.05 (iH, dd, J = 1.9, 8.2 Hz, H-6), 7.15
(1H, d, J= 1.9 Hz, H-2), and 7.60 (1H, d, J = 15.9 Hz, H-
7). BC NMR (125 MHz, CD;0D): see Table 1.
Compound (4): slightly yellow powder; mp 210-212°C;
EIMS m/z (relative intensity) 164 (M*, 100), 147 (15), 119
(5); IR (KBr) Vg 3420, 1635/cm; UV Ay 330, 280 nm
(MeOH); '"H NMR (500 MHz, CD;0D) 6 6.29 (1H, d,J =
15.9 Hz, H-8), 6.83 (2H, d, J = 14.3 Hz, H-3 and H-5),
7.45 (2H, d, J = 14.3 Hz, H-2 and H-6), and 7.62 (1H, d, J
=15.9 Hz, H-7). ®*C NMR (125 MHz, CD;OD): see Table
1.
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Compound (5): yellow powder; mp 282-285°C; EIMS m/
z (relative intensity) 302 (M*, 100), 273 (8), 153 (10), 137
(15); IR (KBr) vga 3400, 1640/cm; UV Ay, 382, 353,
274 nm (MeOH); 'H NMR (500 MHz, CD;OD and
acetone-dy) 6 6.21 (1H, d, /= 2.0 Hz, H-6), 6.43 (1H, d, J
= 2.0 Hz, H-8), 6.92 (1H, d, J = 8.5 Hz, H-5), 7.67 (1H,
dd, /= 8.5, 2.2 Hz, H-6), and 7.77 (1H, d, /=2.2 Hz, H-
2). 3C NMR (125 MHz, CD;OD and acetone-dy): see
Table 1.

Structural identification of five isolated compounds
were carried out by interpretation of several spectroscopic
and physical sources, which were readily identified as 4-
hydroxy-3-methoxybenzoic acid (1), 3,4-dihydroxybenzoic
acid (2), 4-hydroxy-3-methoxycinnamic acid (3), 4-hydroxy-
cinnamic acid (4), and quercetin (5). Compound 1 was
obtained as a white powder and in the EIMS, the molecular
ion peak showed as m/Zz 180. IR spectrum showed
absorption bands at 3410 and 1680/cm, which indicated
the presence of hydroxyl and carbonyl moiety, respectively.
The "H-NMR spectrum of compound 1 showed an ABX-
type aromatic proton system appearing at § 7.57 (H-2, d, J
= 1.9 Hz), 7.58 (H-6, dd, J = 1.9, 8.7 Hz), and 6.86 (H-5,
d, J = 8.7 Hz) as well as one methoxy at & 3.91. The "*C-
NMR and DEPT spectrum showed the presence of eight
carbon as three methines [6 112.8 (C-2), 114.8 (C-5), and
124.3 (C-6)], one methoxy (8 55.4), and four quaternary
carbons [6 122.1 (C-1), 147.7 (C-3), 151.7 (C-4), and
169.0 (C-7)]. The 'H-"H COSY spectrum of 1 showed one
spin-system for this compound. Thus, H-5 at 8 6.86 was
cotrelated to H-6 at 8 7.58, also unassigned connectivities
carbonyl group and quaternary carbons were determined
on the basis of HMBC correlations. The connectivity
between C-1 and H-2/H-5, C-2 and H-6, C-3 and H-2, C-4
and -6, C-7 and H-2 were determined on the basis of
HMBC correlations (Fig. 5). Additionally, methoxy group
should be linked to the C-3 of the benzene ring, as
indicated by the HMBC correlations of OCH; with C-2
and C-3. Therefore, compound 1 was identified as 4-
hydroxy-3-methoxybenzoic acid (1). Compound 2 was

0
X~ OH
" \y/d
3

OH O
OH

Ho(b\j o) (\

OH
C—=H 5

OH
Fig. 5. Important HMBC correlations in compounds 1, 3, and
5.

isolated as a white powder and its mass spectrum showed
a molecular ion peak at m/Zz 154. IR spectrum showed
strong hydroxyl and carbonyl group absorption bands at
3305 and 1680/cm, respectively. The 'H- and *C-NMR
spectra of compound 2 were almost the same as those for
except for methoxy group of compound 1. From these
data, the identity 2 was established as 3,4-dihydroxy-
benzoid acid (2). Compound 3 was obtained yellow
amorphous powder, with a molecular ion peak at m/z 194,
as revealed by EIMS. UV spectrum showed absorption
maximum at 330 nm and IR spectrum showed the
presence of hydroxyl (3390/cm) and carbonyl (1690/cm)
respectively. The exact structures were inferred from a
detailed analysis of 'H- and C-NMR spectrum, together
with 2D-NMR experiments. The '"H-NMR spectrum showed
three aromatic protons [6 7.15 (d, J=1.9 Hz, H-2), § 7.05
(dd, J= 1.9, 8.2 Hz, H-5), and & 6.82 (d, J = 8.2 Hz, H-
6)], methoxy group & 3.88 (s, 3-OCHj3) and two doublets
at 8 7.60 (H-7) and 6.31 (H-8) which on the basis of the
observed large proton-proton coupling constant (J = 15.9
Hz) were assigned to a pair of trans-olefinic protons. The
BCNMR and DEPT spectrum showed the presence of ten
carbon as one carbonyl (8 171.4, C-9), one methoxy (&
56.9, OCHs), five methines [5 112.2 (C-2), 3 116.3 (C-8),
8 116.9 (C-6), & 124.4 (C-5), and d 147.4 (C-7)], and three
quaternary carbons [6 128.2 (C-1), & 149.8 (C-3), and &
150.9 (C-4)]. Also, the 'H-'"H COSY spectrum showed
correlation peak H-5-H-6, H-2-H-6, and H-7-H-8.
Unassigned connectivities of carbonyl and quatemnary carbons
were determined on the basis of HMBC correlations. The
HMBC spectrum showed cross peaks C-1, C-4, and C-9
with H-2/H-5, H2/H-6, and H-7/H-8 (Fig. 5). Additionally,
methoxy group also should be linked to the C-3 of the
benzene ring, as indicated by the HMBC correlations of
OCH; with C-2 and C-3, while the HMBC cross peaks C-1-
H-7/H-8 and C-2-H-7 indicated the attachment of propenoic
acid group at the position C-1 of benzene ring. Thus,
based on these data, the identity of compound 3 was 4-
hydroxy-3-methoxycinnamic acid (3). Compound 4 showed
a major ion peak at m/z 164 and UV and IR spectrum were
very similar to compound 3. The 'H-NMR of 4 showed
ortho-coupled doublets of two protons each at & 6.83 (d, J
= 14.3 Hz, H-3 and H-5) and & 7.45 (d, /= 14.3 Hz, H-2
and H-6), two #rans-olefinic protons & 6.29 (1H, d, J =
15.9 Hz, H-8) and 7.62 (1H, d, J = 15.9 Hz, H-7). The
BC-NMR and DEPT spectrum showed the presence of
nine carbons and these spectrums were almost identical to
compound 3 except for the methoxy group present
compound 3. These data indicated that the identity of
compound 4 was 4-hydroxycinnamic acid (4). Compound
5 was obtained as yellow powder and a molecular ion
peak at m/z 302. The IR spectrum showed the presence of
hydroxyl (3425/cm?, aromatic C=C (1550/cm), and carbonyl
(1668/cm). The 'H- and “C-NMR data with DEPT
experiments showed the presence of fifteen carbon atoms
as five methins [8 99.5 (C-6), 94.7 (C-8), 116.2 {C-2),
116.5 (C-5), 121.9 (C-6)], one carbonyl 6 177.3 (C-4), and
hine quaternary carbons [3 137.4 (C-3), 147.9 (C-2), 162.6
(C-3), 165.7 (C-7), 158.3 (C-9), 104.6 (C-10), 124.3 (C-1),
146.4 (C-3), 149.0 (C-4)]. The 'H-NMR data showed
evidence for five aromatic protons [6 6.21 (1H, d, /= 2.0
Hz, H-6), 6.43 (1H, d, J = 2.0 Hz, H-8), 692 (1H, d, J =
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8.5 Hz, H-5), 7.77 (1H, d, J = 2.2 Hz, H-2), 7.67 (1H, dd,
J= 8.5 and 2.2 Hz, H-6)]. Namely, the 'H-NMR spectra of
compound 5 showed two meta-coupled doublets ascribable
to H-8 and H-6 of A-ring in the flavonoid skeleton, and a
meta-coupled doublet, an ortho, meta-coupled doublet-
doublet and an ortho-coupled doublet attributable to H-2,
H-6, and H-5 of B-ring, respectively. The connectivity of
C-2 and C-9 with H-2/H-6 and H-8 as well as C-10 and C-
7 with H-6/H-8 were determined on the basis of HMBC
correlations (Fig. 5). These data indicate that compound 5§
was quercetin.

Radical scavenging activity of isolated compounds (1-5)
Antioxidant activities of isolated compounds (1-5) were
tested against three radical sources using UV-VIS
spectrophotometry. Although DPPH and ABTS assays are
not biologically relevant, both assays were performed as
preliminary mean to estimate the direct free radical
scavenging abilities of the phenolic compounds. These
compounds were also applied to the hydroxyl radical
which was regarded as the most reactive oxidant species
that may induce severe damage to adjacent biomolecules
(38). The radical scavenging activity of phenolic compounds
(1-5) on the DPPH radical, which can be measured as
decolorizing activity following the trapping of the
unpaired electron of DPPH, were examined first.

Compounds 2, 3, and 5 showed potent antioxidant
activities (Table 2), while compounds 1 and 4 did not
show any observable activity up to 100 pM and 10+3%
inhibition at 200 uM. As shown in Fig. 6, active compounds
2, 3, 5, and BHA, which was used as a positive control,
were carried out at dose-dependant inhibitory concentration
in DPPH assays.

Compound 5 exhibited the most potent DPPH radical
scavenging activities followed by compound 2 with an
ICs; of 5.0 and 10.4 uM, respectively. Thus, 3,4-dihydroxyl
group seems to be important in eliciting potent DPPH
radical scavenging activity. The additional methoxyl group
at position C-3 in benzene ring and p-hydroxyl benzene, as
in compounds 1 and 4, reduces greatly radical scavenging
capacity. The data obtained were also compared with those
of BHA used as a reference compound. Its ICsy was

100

80}
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1000
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Fig. 6. DPPH radical scavenging activities of compounds 2, 3,
5, and BHA.
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Table 2. Antioxidant activities of isolated compounds 1-5 on
DPPH, ABTS, and hydroxyl radicals

ICso (uM)"
Compound
DPPH ABTS Hydroxyl
1 >200 > 200 >200
2 10.4 9.6 >200
3 452 5.5 >200
4 >200 214 >200
5 5.0 33 >200
BHA/Trolox  31.8 (BHA) 11.7 (Trolox) 20.5 (Trolox)

DInhibitory activitty was expressed as the mean of 50% IC (inhibitory
concentration) of triplicate experiments.

obtained as 31.8 uM (Table 2). The antioxidant activity of
2 and 5 against DPPH radical was 3- and 6-fold more
potent than that BHA, respectively. 4-Hydroxycinnamic
acid (4) did not show radical scavenging activity up to 200
uM, indicating that vicinal diol group is required to elicit
the DPPH radical scavenging activity. This O-dihydroxyl
group in benzene ring structure conferred higher stability
in the radical form and participated in electron delocaliza-
tion. These findings were consistent with those reported in
the literature (39, 40). On the basis of DPPH radical
scavenging activities, the scavenging ability of the phenolic
compounds (1-5) against ABTS radical was then
evaluated. The formation of the ABTS radical cation takes
place almost instantaneously after additing potassium
persulfate to an ABTS solution. Compounds 2-5 showed
scavenging activities except for compound 1 (ICso > 200
uM). Moreover, quercetin (5), 4-hydroxy-3-methoxy-
cinnamic acid (3) and 3,4-dihydroxybenzoid acid (2)
showed strong ABTS radical scavenging activity, whereas
4-hydroxycinnamic acid (4) showed little scavenging
activity. As shown in Fig. 7, isolated compounds 2-5 and
Trolox, which was used as a positive control, were tested for
a dose-dependant inhibitory effect on ABTS radical.
Compounds 2, 3, 4, and 5 showed potent ABTS radical
scavenging activities with ICsg values of 9.6, 5.5, 21.4, and
3.3 uM, respectively. However, compound 1 did not show
any observable activity up to 200 uM. The data obtained
were also compared with those of Trolox as a reference
compound. Its ICsy was obtained as 11.7 pM (Table 2). The
antioxidant activity of 3 and 5 against ABTS radical are 2-
and 4-fold more potent than that Trolox, respectively.
These results also showed that compounds 2 and 5 include
the hydroxyl groups in vicinal diol would be effective in
ABTS radical scavenging activity. Interestingly,
compounds 3 and 4 were more effective scavengers
against ABTS radical (3: ICs5, = 5.5 uM and 4: 1C5, = 21.4
puM) than DPPH radical (3: ICsp = 45.2 pM and 4: ICs, >
200 uM) (Fig. 7).

On the other hand, in the hydroxyl radical scavenging
effects, isolated compounds 1-5 showed weak scavenging
activities (ICso > 200 uM). In our three antioxidant assays,
catecholic phenolic compounds 2 and 5 exhibited stronger
free radical scavenging activities against DPPH and ABTS
than compounds 3 and 4 (Fig. 8). It was observed that
ortho-dihydroxylated phenolic compounds showed a
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Fig. 7. ABTS radical scavenging activities of compounds 2-5
and Trolox.
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Fig. 8. ICy, values of compounds 2-5 on DPPH and ABTS
radical.

markedly higher ability to scavenge DPPH and ABTS
radicals, in comparison with the non-ortho-dihydroxylated
phenolic compounds.

In conclusion, there is no doubt that the peanut is the
most important product of nut. In comparison with the nut,
the germinating exudates are almost completely neglected
in commercial terms, although it is shown potent
antioxidant activities and there are considerable potential
for its exploitation. We isolated and identified five
phenolic compounds were isolated for the first time by
antioxidant-guided fractionation from the exudate of
geminating peanut. Among them, three compounds 2, 3,
and 5 showed potent antioxidant activities in DPPH as
well as ABTS assays. However, all 5 compounds demon-
strated only weak hydroxyl radical scavenging activity.
The results obtained here indicate that further evaluation
of the bioactive properties of these compounds is needed.
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