Flavor Release from Ice Cream during Eating

  • Chung, Seo-Jin (Department of Food and Nutrition, Seoul Women's University)
  • Published : 2007.02.28

Abstract

The main purpose of flavor research using conventional extraction methods, such as solvent extraction, distillation, and dynamic headspace, is to effectively extract, identify, and quantify flavor volatiles present in food matrices. In recent flavor research, the importance of understanding flavor release during mastication is increasing, because only volatiles available in the headspace contribute to the perception of food 'flavors'. Odor potency differs among flavor volatiles, and the physicochemical characteristics of flavor volatiles affect their release behavior and interaction with various food matrices. In this review, a general overview of flavor release and flavor-food interactions within frozen dessert systems is given with emphasis on chemical, physiological, and perceptual aspects. Chemical and sensory analysis methods competent for investigating such flavor-food interactions are illustrated. Statistical analysis techniques recommended for data acquired from such experiments are also discussed.

Keywords

References

  1. Land DG. Perspectives on the effects of interactions on flavor perception: An overview. Chap. 2, pp. 2-13. In: Flavor Food Interaction. McGorrin RJ, Leland N (eds). American Chemical Society, Washington, DC, USA (1996)
  2. Roberts DD, Acree TE. Simulation of retronasal aroma using a modified headspace technique: Investigating the effects of saliva, temperature, shearing, and oil on flavor release. J. Agr. Food Chem. 43: 2179-2186 (1995) https://doi.org/10.1021/jf00056a041
  3. Wilson CE, Brown WE. Influence of food matrix structure and oral breakdown during mastication on temporal perception of flavor. J. Sensory Stud. 21: 69-86 (1997)
  4. Malone ME, Appelqvist IAM. Gelled emulsion particles for the controlled release of lipophilic volatiles during eating. J. Control. Release. 90: 227-241 (2003) https://doi.org/10.1016/S0168-3659(03)00179-2
  5. de Wijk RA, Prinz JF, Engelen J, Weenen H. The role of ${\alpha}$-amylase in the perception of oral texture and flavour in custards. Physiol. Behav. 83: 81-91 (2004) https://doi.org/10.1016/j.physbeh.2004.07.014
  6. Soeting WJ, Heidema J. A mass spectrometry method for measuring flavor concentration /time profiles in human breath. Chem. Senses 13: 607-617 (1988) https://doi.org/10.1093/chemse/13.4.607
  7. Linforth RST, Taylor AJ. Measurement of volatile release in the mouth. Food Chem. 48: 115-120 (1993) https://doi.org/10.1016/0308-8146(93)90044-G
  8. Linforth RST, Savary I, Pattenden B, Taylor AJ. Volatile compounds found in expired air during eating of fresh tomatoes and in the headspace above tomatoes. J. Sci. Food Agr. 65: 241-247 (1994) https://doi.org/10.1002/jsfa.2740650219
  9. Van Ruth SM, Roozen JP, Cozijnsen JL. Volatile compounds of rehydrated French beans, bell peppers, and leeks. Part 1. Flavor release in the mouth and in three mouth model systems. Food Chem. 53: 15-22 (1995) https://doi.org/10.1016/0308-8146(95)95780-A
  10. Ingham KE, Linforth RST, Taylor AJ. The effect of eating on aroma release from strawberries. Food Chem. 54: 283-288 (1995) https://doi.org/10.1016/0308-8146(95)00048-N
  11. Ingham KE, Linforth RST, Taylor AJ. The effect of eating on the rate of aroma release from mint-flavored sweets. Lebensm. - Wiss. Technol. 28: 105-110 (1995) https://doi.org/10.1016/S0023-6438(95)80020-4
  12. Delahunty CM, Piggott JR, Conner JM, Paterson A. Comparison of dynamic flavor release from hard cheeses and analysis of headspace volatiles from the mouth with flavor perception during conswnption. J. Sci. Food Agr. 71: 273-281 (1996) https://doi.org/10.1002/(SICI)1097-0010(199607)71:3<273::AID-JSFA582>3.0.CO;2-I
  13. Brauss MS, Linforth RST, Taylor AJ. Effect of variety, time of eating, and fruit to fruit variation on volatile release during eating of tomato fruits (Lycopersicon esculentum). J. Agr. Food Chem. 46: 2287-2292 (1998) https://doi.org/10.1021/jf971019x
  14. Linforth RST, Baek I, Taylor AJ. Simultaneous instrumental and sensory analysis of volatile release from gelatin and pectin/gelatin gels. Food Chem. 65: 77-83 (1999) https://doi.org/10.1016/S0308-8146(98)00173-3
  15. Brauss MS, Linforth RST, Cayeux I, Harvey B, Taylor AJ. Altering the fat content affects flavor release in a model yogurt system. J. Agr. Food Chem. 47: 2055-2059 (1999) https://doi.org/10.1021/jf9810719
  16. Boland AB, Delahunty CM, van Ruth SM. Influence of the texture of gelatin gels and pectin gels on strawberry flavour release and perception. Food Chem. 96: 452-460 (2006) https://doi.org/10.1016/j.foodchem.2005.02.027
  17. Lee III WE. A suggested instrumental technique for studying dynamic flavor release from food products. J. Food Sci. 51: 249-250 (1986) https://doi.org/10.1111/j.1365-2621.1986.tb10888.x
  18. Elmore JS, Langley KR. Novel vessel for the measurement of dynamic flavor release in real time from liquid foods. J. Agr. Food Chem. 44: 3560-3563 (1996) https://doi.org/10.1021/jf950687k
  19. Roberts DD, Acree TE. Effects of heating and cream addition on fresh raspberry aroma using a retronasal aroma simulator and gas chromatography olfactometry. J. Agr. Food Chem. 44: 4919-4925 (1996)
  20. Bakker J, Boudaud N, Harrison M. Dynamic release of diacetyl from liquid gelatin in the headspace. J. Agr. Food Chem. 46: 2714-2720 (1998) https://doi.org/10.1021/jf970994l
  21. Springett MB, Rozier V, Bakker J. Use of fiber interface direct mass spectrometry for the determination of volatile flavor release from model food system. J. Agr. Food Chem. 47: 1125-1131 (1999) https://doi.org/10.1021/jf980199n
  22. Boland AB, Buhr K, Giannouli P, van Ruth SM. Influence of gelatin, starch, pectin and artificial saliva on the release of 11 flavour compounds from model gel systems. Food Chem. 86: 401-411 (2004) https://doi.org/10.1016/j.foodchem.2003.09.015
  23. McGorrin RJ. Introduction. p. 1. In: Flavor Food Interactions. McGorrin RJ, Leland JV (eds). American Chemical Society, Washington, DC, USA (1996)
  24. Nawar WW. Some considerations in interpretation of direct headspace chromatographic analyses of food volatiles. Food Technol.-Chicago 20: 213-213 (1966)
  25. Godshall MA. The role of carbohydrates in flavor development. Food Technol.-Chicago 49: 71-78 (1988)
  26. de Roos KB. Understanding and controlling the behaviour of aroma compounds in thermally processed foods. Trends Food Sci. Tech. 17: 236-243 (2006) https://doi.org/10.1016/j.tifs.2005.11.008
  27. Guyot C, Bonnafont C, Lesschaeve I, Issanchou S, Voilley A, Spinnler HE. Effect of fat content on odor intensity of three aroma compounds in model emulsions: $\delta$-decalactone, diacetyl, and butyric acid. J. Agr. Food Chem. 44: 2341-2348 (1996) https://doi.org/10.1021/jf960171g
  28. Taylor AJ. Physical chemistry of flavor. Int. J. Food Sci. Tech. 33: 53-62 (1998) https://doi.org/10.1046/j.1365-2621.1998.00157.x
  29. Hills BP, Harrison M. Two-film theory of flavor release from solids. Int. J. Food Sci. Tech. 30: 425-436 (1995) https://doi.org/10.1111/j.1365-2621.1995.tb01390.x
  30. Harrison M, Hills BP. Effects of air flow-rate on flavor release from liquid emulsions in the mouth. Int. J. Food Sci. Tech. 32: 1-9 (1997) https://doi.org/10.1046/j.1365-2621.1997.00377.x
  31. Druaux C, Voilley A. Effects of food composition and microstructure on volatile release. Trends Food Sci. Tech. 8: 364-368 (1997) https://doi.org/10.1016/S0924-2244(97)01095-9
  32. Haahr AM, Bredie WLP, Stahnke LH, Jensen B, Refsgaard HHH. Flavour release of aldehydes and diacetyl in oil/water systems. Food Chem. 71: 355-362 (2000) https://doi.org/10.1016/S0308-8146(00)00184-9
  33. Chevance FFV, Farmer LJ. Release of volatile odor compounds from full-fat and reduced fat frankfurters. J. Agr. Food Chem. 47: 5161-5168 (1999) https://doi.org/10.1021/jf9905166
  34. Hatchwell LC. Implication of fat on flavor. Chap. 2, pp. 14-23. In: Flavor Food Interaction. McGorrin RJ, Leland JV (eds). American Chemical Society, Washington, DC, USA (1996)
  35. de Roos KR. How lipids influence food flavor. Food Technol.-Chicago 51: 60-62 (1997)
  36. Yoo SS, Kook SH, Park SY, Shim JH, Chin KB. Evaluation of curing and flavor ingredients, and different cooking methods on the product quality and flavor compounds of low-fat sausages. Food Sci. Biotechnol. 14: 634-638 (2005)
  37. Milo C, Reineccius GA. Identification and quantification of potent odorants in regular-fat and lowfat mild cheddar cheese. J. Agr. Food Chem. 45: 3590-3594 (1997) https://doi.org/10.1021/jf970152m
  38. Denker M, Parat-Wilhelms M, Drichelt G, Paucke J, Luger A, Borcherding K, Hoffmann W, Steinhart H. Investigation of the retronasal flavour release during the consumption of coffee with additions of milk constituents by 'Oral Breath Sampling'. Food Chem. 98: 201-208 (2006) https://doi.org/10.1016/j.foodchem.2005.03.034
  39. Nongonierma AB, Colas B, Springett M, Le Quere JL, Voilley A. Influence of flavour transfer between different gel phases on perceived aroma. Food Chem. 100: 297-305 (2007) https://doi.org/10.1016/j.foodchem.2005.07.063
  40. Im JS, Marshall RT, Heymann H. Frozen dessert attribute changes with increased amounts of unsaturated fatty acids. J. Food Sci. 59: 1222-1226 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb14682.x
  41. Li Z, Marshall RT, Heymann H, Fernando L. Effect of milk fat content on flavor perception of vanilla ice cream. J. Dairy Sci. 80: 3133-3141 (1997) https://doi.org/10.3168/jds.S0022-0302(97)76284-2
  42. Guinard JX, Zoumas-Morse C, Mori L, Uatoni B, Panyam D, Kilara A. Sugar and fat effects on sensory properties ofice cream. J. Food Sci. 62: 1087-1094 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb15044.x
  43. Ohmes RL, Marshall RT, Heymann H. Sensory and physical properties of ice creams containing milk fat or fat replacers. J. Dairy Sci. 81: 1222-1228 (1998) https://doi.org/10.3168/jds.S0022-0302(98)75682-6
  44. Jun MR, Jeong WS, Ho CT. Health promoting properties of natural flavor substances. Food Sci. Biotechnol. 15: 329-338 (2006)
  45. Conforti FD. Effect of fat content and corn sweeteners on selected sensory attributes and shelf stability of vanilla ice cream. J. Soc. Dairy Technol. 47: 69-75 (1994) https://doi.org/10.1111/j.1471-0307.1994.tb01275.x
  46. Graf E, de Roos KB. Performance of vanilla flavor in low-fat ice cream. Chap. 3, pp. 24-35. In: Flavor Food Interaction. McGorrin RJ, Leland JV (eds). American Chemical Society, Washington, DC, USA (1996)
  47. Guichard E, Langourieux S. Interactions between $\beta$-lactoglobulin and flavour compounds. Food Chem. 71: 301-308 (2000) https://doi.org/10.1016/S0308-8146(00)00181-3
  48. Sostmann K, Bernal B, Andriot I, Guichard E. Flavour binding by $\beta$-lactoglobulin: different approaches. pp. 425-434. In: Flavour Perception, Aroma Evaluation. Kruze H-P, Rothe M (eds). 5th Warburg Aroma Symposium, Eisenach, Germany (1997)
  49. Guichard E. Flavour retention and release from protein solutions. Biotechnol. Adv. 24: 226-229 (2006) https://doi.org/10.1016/j.biotechadv.2005.11.003
  50. Park SH, Hong GP, Kim JY, Choi MJ, Min SG. The influence of food hydrocolloids on changes in the physical properties of ice cream. Food Sci. Biotechnol. 15: 721-727 (2006)
  51. Nongonierma AB, Springett M, Quere J-LL, Cayot P, Voilley A. Flavour release at gas/matrix interfaces of stirred yoghurt models. Int. Dairy J. 16: 102-110 (2006) https://doi.org/10.1016/j.idairyj.2005.01.010
  52. Decourcelle N, Lubbers S, Vallet N, Rondeau P, Guichard E. Effect of thickeners and sweeteners on the release of blended aroma compounds in fat-free stirred yoghurt during shear conditions. Int. Dairy J. 14: 783-789 (2004) https://doi.org/10.1016/j.idairyj.2004.02.007
  53. Gonzalez-Tomaz L, Bayarri S, Taylor AJ, Costell E. Flavour release and perception from model dairy custards. Food Res. Int. 40: in press (2007)
  54. Boland AB, Delahunty CM, van Ruth SM. Influence of the texture of gelatin gels and pectin gels on strawberry flavour release and perception. Food Chem. 96: 452-460 (2006) https://doi.org/10.1016/j.foodchem.2005.02.027
  55. Plug H, Haring P. The role of ingredient-flavor interactions in the development of fat free foods. Trends Food Sci. Tech. 4: 150-152 (1993) https://doi.org/10.1016/0924-2244(93)90035-9
  56. Marshall RT, Arbuckle WS. Ice cream ingredients. Chap. 5, pp. 45-70. In: Ice Cream. 5th ed. Chapman & Hall, New York, NY, USA (1996)
  57. Fischer N, Widder S. How proteins influence food flavor. Food Technol.-Chicago 51: 68-70 (1997)
  58. Li Z. Interactions of flavor compounds with soy and dairy proteins in model systems. PhD thesis, University of Missouri, Columbia, MO, USA (2000)
  59. Giese J. Fats, oils, and fat replacers. Food Technol.-Chicago 50: 7883 (1996)
  60. Breslin PAS. Human gustation and flavour. Flavour Frag. J. 16: 439-456 (2001) https://doi.org/10.1002/ffj.1054
  61. Engelen L, de Wijk RA, Prinz JF, Janssen AM, Weenen H, Bosman F. The effect of oral and product temperature on the perception of flavor and texture attributes of semi-solds. Appetite 41: 273-281 (2003) https://doi.org/10.1016/S0195-6663(03)00105-3
  62. Maarse H, Visscher CA, Willemsens LC, Nijssen LM, Boelens MH. Volatile compounds in food, qualitative, quantitative data. Supplement to the 6th ed. TNO Nutrition and Food Research. Zeist, Netherlands (1994)
  63. Manley C, Ho C-T. Flavor Measurement. Marcel Dekker, New York, NY, USA. pp. 37-60 (1993)
  64. Langler JE, Day EA. Development and flavor properties of methyl ketones in milk fat. J. Dairy Sci. 47: 1291-1296 (1964) https://doi.org/10.3168/jds.S0022-0302(64)88907-4
  65. Haverkamp-Begemann P, Koster JC. 4-Cis-heptenal: a cream flavored component of butter. J. Dairy Sci. 50: 48-56 (1964)
  66. Shiratsuchi H, Yoshimura M, Imayyoshi K, Noda K, Osajima, Y. Contributors to sweet and milky odor attributes of spray-dried skim milk powder. J. Agr. Food Chem. 43: 2456-2457 (1995)
  67. de Wijk RA, Rasing F, Wilkinson CL. Sensory flavor-texture interactions for custards, J. Texture Stud. 34: 131-146 (2003) https://doi.org/10.1111/j.1745-4603.2003.tb01371.x
  68. de Wijk RA, Terpstra MEJ, Janssen AM, Prinz JF. Perceived creaminess of semi-solid foods. Trends Food Sci. Tech. 17: 412-422 (2006) https://doi.org/10.1016/j.tifs.2006.02.005
  69. Kokini JL. Fluid and semi-solid food texture and texture-taste interactions. Food Technol.-Chicago 39: 86-94 (1985)
  70. Tepper BJ, Kuang T. Perception of fat in a milk model system using multidimensional scaling. J. Sens. Stud. 11: 175-190 (1996) https://doi.org/10.1111/j.1745-459X.1996.tb00040.x
  71. Richardson NJ, Booth DA. Multiple physical patterns in judgments of the creamy texture of milks and creams. Acta Psychol. 84: 93-101 (1993) https://doi.org/10.1016/0001-6918(93)90075-3
  72. Richardson NJ, Booth DA, Stanley NL. Effect of homogenization and fat content on oral perception of low and high viscosity model creams. J. Sens. Stud. 8: 133-143 (1993) https://doi.org/10.1111/j.1745-459X.1993.tb00208.x
  73. Wood FW. An approach to understanding creaminess. Starch/Starke 26: 127-130 (1974) https://doi.org/10.1002/star.19740260406
  74. Kokini JL, Cussler EL. Predicting the texture of liquid and melting semisolid foods. J. Food Sci. 48: 1221-1224 (1983) https://doi.org/10.1111/j.1365-2621.1983.tb09196.x
  75. Mela DJ. Sensory assessment of fat content in fluid dairy products. Appetite 10: 37-44 (1988) https://doi.org/10.1016/S0195-6663(88)80031-X
  76. Daget N, Joerg M, Bourne M. Creamy perception 1: In model dessert creams. J. Texture Stud.18: 367-388 (1987) https://doi.org/10.1111/j.1745-4603.1987.tb00913.x
  77. Singer NS, Dunn IN. Protein microparticulation: the principle and the process. J. Am. Coll. Nutr. 9: 388-397 (1990) https://doi.org/10.1080/07315724.1990.10720397
  78. Folkenberg DM, Bredie WLP, Martens M. What is mouthfeel? Sensory-rheological relationships in instant hot cocoa drinks. J. Sens. Stud. 14: 181-195 (1999) https://doi.org/10.1111/j.1745-459X.1999.tb00111.x
  79. Mela DJ, Marshall RJ. Sensory properties and perceptions of fats. pp. 43-57. In: Dietary Fats: Determinants of Preference, Selection, and Consumption. Mela DJ (ed). Elsevier Applied Science, London, New York, NY, USA (1992)
  80. Lawless HT, Clark CC. Psychological biases in time-intensity scaling. Food Technol-Chicago 46 : 81, 84-86, 90 (1992)
  81. Frost MB, Dijksterhuis G, Martens M. Sensory perception of fat in milk. Food Qual. Prefer. 12: 327-336 (2001) https://doi.org/10.1016/S0950-3293(01)00018-0
  82. Yackinous C, Guinard J-X. Flavor manipulation can enhance the impression of fat in some foods. J. Food Sci. 65: 909-914 (2000) https://doi.org/10.1111/j.1365-2621.2000.tb13611.x
  83. Noble AC. Taste-aroma interaction. Trends Food Sci. Tech. 7: 439-443 (1996) https://doi.org/10.1016/S0924-2244(96)10044-3
  84. Frank RA, Byram J. Taste-smell interactions are tastant and odorant dependent. Chem. Senses 13: 445-455 (1988) https://doi.org/10.1093/chemse/13.3.445
  85. Opet JM. Effect of caffeine, ethanol, and sucrose on temporal perception of menthol. MS thesis, University of California, Davis, CA, USA (1989)
  86. Christensen CM. Effects of color on aroma, flavor and texture judgments of foods. J. Food Sci. 48: 787-790 (1983) https://doi.org/10.1111/j.1365-2621.1983.tb14899.x
  87. Lawless HT. Descriptive analysis of complex odors: reality, model or illusion? Food Qual. Prefer. 10: 325-332 (1999) https://doi.org/10.1016/S0950-3293(98)00052-4
  88. Prescott H. Flavour as a psychological construct: implications for perceiving and measuring the sensory qualities offoods. Food Qual. Prefer. 10: 349-356 (1999) https://doi.org/10.1016/S0950-3293(98)00048-2
  89. Jun HR, Cho IH, Choi HK, Kim YS. Comparison of volatile components in fresh and dried red peppers (Capsicum annuum L.). Food Sci. Biotechnol. 14: 392-398 (2005)
  90. Choi UK. Evaluation of barley bran sauce aroma by multiple regression analysis. Food Sci. Biotechnol. 14: 656-660 (2005)
  91. Kim YS, Cassens J, Dickmann R, Reineccius G. Gas chromatography - olfactometry of static headspace for the analysis of flavor change in com flakes during storage. Food Sci. Biotechnol. 10: 261-266 (2001)
  92. Lee C. Changes in n-hexanal content of peanut milk fermented with lactic acid bacteria. Food Sci. Biotechnol. 10: 387-390 (2001)
  93. Park EY, Kim JH, Noh BS. Application of the electronic nose and artificial neural network system to quality of the stored soymilk. Food Sci. Biotechnol. 44: 320-323 (2002)
  94. Chin HW, Bernhard RA, Rosenberg M. Application of solid phase microextraction for the analysis of cheese volatiles. J. Food Sci. 61: 1118-1122,1128 (1996) https://doi.org/10.1111/j.1365-2621.1996.tb10943.x
  95. Friedrich JE, Acree TE. Gas chromatography olfactometry (GC/O) of dairy products. Int. Dairy J. 8: 235-241 (1998) https://doi.org/10.1016/S0958-6946(98)80002-2
  96. Kwon DJ, Kim WJ. Isolation of higher alcohol-producing yeast as the flavor components and determination of optimal culture conditions. Food Sci. Biotechnol. 14: 576-580 (2005)
  97. Grosch W. Detection of potent odorants in foods by aroma extract dilution analysis. Trends Food Sci. Tech. 4: 68-73 (1993) https://doi.org/10.1016/0924-2244(93)90187-F
  98. Odake S, Roozen JP, Burger JJ. Flavor release of diacetyl and 2-heptanone from cream style dressings in three mouth model systems. Biosci. Biotech. Bioch. 64: 2523-2529 (2000) https://doi.org/10.1271/bbb.64.2523
  99. Benoit FM, Davidson WR, Lovett AM, Nacson S, Ngo A. Breath analysis by atmospheric pressure ionization mass spectrometry. Anal. Chem. 55: 805-807 (1983) https://doi.org/10.1021/ac00255a053
  100. Harvey BA, Barra J. Real time breath and headspace analysis of flavour volatiles. Eur. J. Pharm. Biopharm. 55: 261-269 (2003) https://doi.org/10.1016/S0939-6411(03)00006-7
  101. Aznar M, Tsachaki M, Linforth RST, Ferreira V, Taylor AJ. Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI-MS. Int. J. Mass Spectrom. 239: 17-25 (2004) https://doi.org/10.1016/j.ijms.2004.09.001
  102. Buhr K, van Ruth SM, Delahunty C. Analysis of volatile flavour compounds by proton transfer reaction-mass spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds. Int. J. Mass Spectrom. 221: 1-7 (2002) https://doi.org/10.1016/S1387-3806(02)00896-5
  103. van Ruth SM, Boscaini E, Mayr D, Pugh J, Posthumus M. Evaluation of three gas chromatography and two direct mass spectrometry techniques for aroma analysis of dried red bell peppers. Int. J. Mass Spectrom, 223-224: 55-65 (2003)
  104. Taylor AJ, Linforth RST. Direct mass spectrometry of complex volatile and non-volatile flavour mixtures. Int. J. Mass Spectrom. 223-224: 179-191 (2003)
  105. Lindinger W, Hirber J, Paretzke, H. An ion/molecule-reaction mass spectrometer used for on-line trace gas analysis. Int. J. Mass Spectrom. 129: 79-88 (1993) https://doi.org/10.1016/0168-1176(93)87031-M
  106. Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transferreaction mass spectrometry: medical applications, food control and environmental research. Int. J. Mass Spectrom. 173: 191-241 (1998) https://doi.org/10.1016/S0168-1176(97)00281-4
  107. van Ruth SM, Buhr K. Influence of mastication rate on dynamic flavour release analysed by combined model mouth/proton transfer reaction-mass spectrometry. Int. J. Mass Spectrom. 239: 187-192 (2004) https://doi.org/10.1016/j.ijms.2004.08.009
  108. Pionnier E, Chabanet C, Mioche L, Le Quere JL, Salles C. In-vivo aroma release during eating a model cheese: relations with oral parameters. J. Agr. Food Chem. 52: 557-564 (2004) https://doi.org/10.1021/jf030544v
  109. Deibler KD, Lavin EH, Taylor AJ, Linforth RST, Acree TE. Verification of a mouth simulator by in vivo measurements, J. Agr. Food Chem. 49: 1388-1393 (2001) https://doi.org/10.1021/jf0012401
  110. O'Riordan PJ, Delahunty CM. Comparison of volatile compounds released during the consumption of Cheddar cheese with compounds extracted by vacuum distillation using gas chromatographyolfactometry. Flavour Frag. J. 16: 425-434 (2001) https://doi.org/10.1002/ffj.1034
  111. Lawless HT, Heymann H. Descriptive analysis. Chap. 10, pp. 341-371. In: Sensory Evaluation of Food. Aspen, MD, USA (1998)
  112. Cliff M, Heymann H. Development and use of time-intensity methodology for sensory evaluation: A review. Food Res. Int. 26: 375-385 (1993) https://doi.org/10.1016/0963-9969(93)90081-S
  113. Lee III WE, Pangborn RM. Time-intensity: the temporal aspects of sensory perception. Food Technol.-Chicago 40: 71-82 (1986)
  114. Dijksterhuis GB, Piggott JR. Dynamic methods of sensory analysis. Trends Food Sci. Tech. 11: 284-290 (2001) https://doi.org/10.1016/S0924-2244(01)00020-6
  115. Pionnier E, Nicklaus S, Chabanet C, Mioche L, Taylor AJ, Le Quere JL, Salles C. Flavor perception of a model cheese: relationships with oral and physico-chemical parameters. Food Qual. Prefer. 15: 843-852 (2004) https://doi.org/10.1016/j.foodqual.2004.04.011
  116. Van Buuren S. Analyzing time-intensity response in sensory evaluation. Food Technol.-Chicago 46: 101-104 (1992)
  117. Ovejero-Lopez I, Bro R, Bredie WLP. Univariate and multivariate modelling of flavour release in chewing gum using time-intensity: a comparison of data analytical methods. Food Qual. Prefer. 16: 327343 (2005) https://doi.org/10.1016/j.foodqual.2004.05.014
  118. Piggott JR. Statistical Procedures in Food Research. Elsevier Applied Science, New York, NY, USA (1986)
  119. McEwan JA, Schlich P. Correspondence analysis in sensory evaluation. Food Qual. Prefer. 3: 23-36 (1991/2) https://doi.org/10.1016/0950-3293(91)90020-F
  120. Yoo SS, Kim K, Lee SY, Hong SK, Lee MC, Chang YY, Kwon IB, Pyun YR. Characterization of flavor components in cocoa mass produced by better taste and color treatment using GC/MS and principal component analysis. Food Sci. Biotechnol. 7: 248-252 (1998)
  121. Lee GH, Lee JS, Shin MG. Sensory attribute comparison of consumer milk using descriptive analysis. Food Sci. Biotechnol. 12: 480-484 (2003)
  122. Kim NS. Discriminant analysis of marketed liquor by a multichannel taste evaluation system. Food Sci. Biotechnol. 14: 554-557 (2005)
  123. Bardot I, Bochereau L, Martin N, Palagos B. Sensory-instrumental correlations by combining data analysis and neural network techniques. Food Qual. Prefer. 5: 159-166 (1994) https://doi.org/10.1016/0950-3293(94)90023-X
  124. Lawless HT, Heymann H. Strategic Research. Chap. 18, pp. 602-620. In: Sensory Evaluation of Food. Aspen, MD, USA (1998b)
  125. MacFie HJH, Hedderley D. Current practice in relating sensory perception to instrumental measurements. Food Qual. Prefer. 4: 4149 (1993)