Dehydration Kinetics of Rehmannia (Rehmannia glutinosa Liboschitz)

  • Rhim, Jong-Whan (Department of Food Engineering, Mokpo National University) ;
  • Kim, Ji-Hye (Department of Food Engineering, Mokpo National University) ;
  • Jeong, Won-Chul (Department of Food Engineering, Mokpo National University)
  • Published : 2007.10.31

Abstract

Sliced and whole root of rehmannia were dehydrated in a laboratory dryer at 40, 60, 80, and $100^{\circ}C$ to evaluate the kinetic parameters for dehydration of rehmannia. The drying curves of both samples were characterized by a falling-rate drying period only. Sliced rehmannia dried 1.1 to 3.1 times faster than whole root of rehmannia depending on drying temperature. Equilibrium moisture content (EMC) of rehmannia samples at the drying temperature tested were 0.069-0.078 g water/g dry solid, which was coincided with the monolayer moisture content (0.06 and 0.07 g water/g dry solid) evaluated from desorption isotherms using GAB (Guggenheim-Anderson-de Boer) model. A logarithmic model for thin layer drying was applied to evaluate the drying time to reach EMC ($t_{EMC}$) and drying constant (k). The effect of temperature on $1/t_{EMC}$ and k was described by the Arrhenius model with activation energy values of 32.56 and 47.14 kJ/mol determined using the former parameter, and 34.27 and 38.26 kJ/mol determined using the latter parameter for sliced and whole root of rehmannia, respectively.

Keywords

References

  1. MHW. Rehmannia. p. 820 In: The Korean Pharmacopoeia. The Ministry of Health and Welfare, Seoul, Korea (1982)
  2. Brown D. Rehmanina. pp. 341-342. In: Encyclopedia of Herbs and Their Uses. The Royal Horticultural Society, London, UK (2002)
  3. Kim IJ, Kim MJ, Nam SY, Lee CH, Kim HS. Effects of storage methods on the rhizome quality of Rehmannia glutinosa L. Korean J. Food Preserv. 11: 282-285 (2004)
  4. Sanjuán N, Lozano M, García-Pascual P, Mulet A. Dehydration kinetics of red pepper (Capsicum annum L. var Jaranda). J. Sci. Food Agr. 83: 697-701 (2003) https://doi.org/10.1002/jsfa.1334
  5. Doymaz I, Pala M. Hot-air drying characteristics of red pepper. J. Food Eng. 55: 331-335 (2002) https://doi.org/10.1016/S0260-8774(02)00110-3
  6. Turhan M, Turhan KN. Drying kinetics of red bell pepper. J. Food Process Pres. 21: 209-223 (1997) https://doi.org/10.1111/j.1745-4549.1997.tb00777.x
  7. Gupta P, Ahmed J, Shivhare US, Raghavan GSV. Drying characteristics of red chilli. Dry. Technol. 20: 1975-1987 (2002) https://doi.org/10.1081/DRT-120015579
  8. Sharma GP, Prasad S. Drying of garlic (Allium sativum) cloves by microwave-hot air combination. J. Food Eng. 50: 99-105 (2001) https://doi.org/10.1016/S0260-8774(00)00200-4
  9. Pezzutti A, Crapiste GH. Sorptional equilibrium and drying characteristics of garlic. J. Food Eng. 31: 113-123 (1997) https://doi.org/10.1016/S0260-8774(96)00021-0
  10. Madamba PS, Driscoll RH, Burkle KA. The thin layer drying characteristics of garlic slices. J. Food Eng. 29: 75-97 (1996) https://doi.org/10.1016/0260-8774(95)00062-3
  11. Doymaz I. Convective air drying characteristics of thin layer carrots. J. Food Eng. 61: 359-364 (2004) https://doi.org/10.1016/S0260-8774(03)00142-0
  12. Doymaz I. Drying characteristics and kinetics of okra. J. Food Eng. 69: 275-279 (2005) https://doi.org/10.1016/j.jfoodeng.2004.08.019
  13. Babalis SJ, Belessiotis VG. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. J. Food Eng. 65: 449-458 (2004) https://doi.org/10.1016/j.jfoodeng.2004.02.005
  14. Doymaz I. Drying kinetics of white mulberry. J. Food Eng. 61: 341- 346 (2004) https://doi.org/10.1016/S0260-8774(03)00138-9
  15. Senadeera W, Bhandari BR, Young G, Wijesinghe B. Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. J. Food Eng. 58: 277-283 (2003) https://doi.org/10.1016/S0260-8774(02)00386-2
  16. Simal S, Mulet A, Tarrazo J, Roselló C. Drying models for green peas. Food Chem. 55: 121-128 (1996) https://doi.org/10.1016/0308-8146(95)00074-7
  17. AOAC. Official Methods of Analysis. No. 934.06. Association of Official Analytical Chemists, Arlinton, VA, USA (1990)
  18. Labuza T, Kaanane A, Chen JY. Effect of temperature on the moisture sorption isotherm and water activity shift of two dehydrated food. J. Food Sci. 50: 385-391 (1985) https://doi.org/10.1111/j.1365-2621.1985.tb13409.x
  19. Wolf W, Spiess WEL, Jung G. Standardization of isotherm measurements. pp. 661-671. In: Properties of Water in Foods. Simatos D, Multon JL (eds). Martinus Nijhoff Publishers, Dordrecht, The Netherlands (1985)
  20. Lewis WK. The rate of drying of solid materials. J. Ind. Eng. Chem. 13: 427-432 (1921) https://doi.org/10.1021/ie50137a021
  21. Lomauro CJ, Bakshi AS, Labuza TP. Moisture transfer properties of dry and semi-moist foods. J. Food Sci. 50: 397-400 (1985) https://doi.org/10.1111/j.1365-2621.1985.tb13411.x
  22. Brennan JG, Butters JR, Cowell ND, Lilley AEV. Dehydration. pp. 371-415. In: Food Engineering Opeartions. 3rd ed. Elsevier Applied Science, London, UK (1990)
  23. Saravacos GD, Charm SE. A study of the mechanism of fruit and vegetable dehydration. Food Technol.-Chicago 16: 72-81 (1962)
  24. Rhim JW, Hwang KT. Study on the drying characteristics of wild vegetables. Korean J. Food Sci. Technol. 27: 358-364 (1995)
  25. Henderson SM, Pabis S. Grain drying theory. I: Temperature effect on drying coefficient. J. Agr. Eng. Res. 6: 169-174 (1961)
  26. Yaldiz O, Ertekin C, Uzun HI. Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26: 457-465 (2001) https://doi.org/10.1016/S0360-5442(01)00018-4
  27. Henderson SM. Progress in developing the thin layer drying equation. T. ASAE 17: 1167-1168 (1974) https://doi.org/10.13031/2013.37052
  28. Brunauer S, Deming LS, Deming WE, Troller E. On the theory of van der Waals adsorption of gases. J. Am. Chem. Soc. 62: 1723- 1732 (1940) https://doi.org/10.1021/ja01864a025
  29. Lomauro CJ, Bakshi AS, Labuza TP. Evaluation of food moisture sorption isotherm equations. Part I: Fruit, vegetable, and meat products. Lebensm.-Wiss. Technol. 18: 111-117 (1985)
  30. Lomauro CJ, Bakshi AS, Labuza TP. Evaluation of food moisture sorption isotherm equations. Part II: Milk, coffee, tea, nuts, oilseeds, spices, and starchy foods. Lebensm.-Wiss. Technol. 18: 118-124 (1985)
  31. Maroulis ZB, Tsami E, Marinos-Kouris D. Application of the GAB model to the moisture sorption isotherms for dried fruits. J. Food Eng. 7: 63-78 (1988) https://doi.org/10.1016/0260-8774(88)90069-6
  32. Mazza G, Jayas DS, Oomah BD, Mills JT. Comparison of five three-parameter equations for the description of moisture sorption data of mustard seeds. Int. J. Food Sci. Tech. 29: 71-81 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb02048.x
  33. Pangavhane DR, Sawhey RL, Sasavadia PN. Effect of various dipping pre-treatment on drying kinetics of Thompson seedless grapes. J. Food Eng. 39: 211-216 (1999) https://doi.org/10.1016/S0260-8774(98)00168-X
  34. Togrul IT, Pehlivan D. Mathematical modeling of solar drying of apricots in thin layers. J. Food Eng. 55: 209-216 (2002) https://doi.org/10.1016/S0260-8774(02)00065-1
  35. Sun DW, Woods JL. Low temperature moisture transfer characteristics of barley: Thin-layer models and equilibrium isotherm. J. Agr. Eng. Res. 59: 273-283 (1994) https://doi.org/10.1006/jaer.1994.1086
  36. Sun DW, Woods JL. Low temperature moisture transfer characteristics of wheat in thin layers. T. ASAE 37: 1919-1926 (1994) https://doi.org/10.13031/2013.28284
  37. Rapussa RS, Driscoll RH. The thin layer drying characteristics of white onion slices. Dry. Technol. 13: 1905-1931 (1995) https://doi.org/10.1080/07373939508917056
  38. Uretir G, Ozilgen M, Katnas S. Effects of velocity and temperature of air on the drying rate constants of apple cubes. J. Food Eng. 30: 339-350 (1996) https://doi.org/10.1016/S0260-8774(96)00056-8
  39. Verma L, Bucklin JB, Endan JB, Wratten FT. Effects of drying air parameters on rice drying models. T. ASAE 85: 296-301 (1985)
  40. Ren G, Chen F. Drying of American ginseng (Panax quinquefolium) roots by microwave-hot air combination. J. Food Eng. 35: 433-445 (1998) https://doi.org/10.1016/S0260-8774(98)00030-2