Functional Analysis of the Invariant Residue G791 of Escherichia coli 16S rRNA

  • 발행 : 2007.10.30

초록

The nucleotide at position 791(G791) of E. coli 16S rRNA was previously identified as an invariant residue for ribosomal function. In order to characterize the functional role of G791, base substitutions were introduced at this position, and mutant ribosomes were analyzed with regard to their protein synthesis ability, via the use of a specialized ribosome system. These ribosomal RNA mutations attenuated the ability of ribosomes to conduct protein synthesis by more than 65%. A transition mutation (G to A) exerted a moderate effect on ribosomal function, whereas a transversion mutation (G to C or U) resulted in a loss of protein synthesis ability of more than 90%. The sucrose gradient profiles of ribosomes and primer extension analysis showed that the loss of protein-synthesis ability of mutant ribosomes harboring a base substitution from G to U at position 791 stems partially from its inability to form 70S ribosomes. These findings show the involvement of the nucleotide at position 791 in the association of ribosomal subunits and protein synthesis steps after 70S formation, as well as the possibility of using 16S rRNA mutated at position 791 for the selection of second-site revertants in order to identify ligands that interact with G791 in protein synthesis.

키워드

참고문헌

  1. Cannone, J.J., S. Subramanian, M.N. Schnare, J.R. Collett, L.M. D'Souza, Y. Du, B. Feng, N. Lin, L.V. Madabusi, K.M. Müller, N. Pande, Z. Shang, N. Yu, and R.R. Gutell. 2002. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 https://doi.org/10.1186/1471-2105-3-32
  2. Cate, J.H., M.M. Yusupov, G.Z. Yusupova, T.N. Earnest, and H.F. Noller. 1999. X-ray crystal structures of 70S ribosome functional complexes. Science 285, 2095-2104 https://doi.org/10.1126/science.285.5436.2095
  3. Clemons, W.M., Jr., J.L. May, B.T. Wimberly, J.P. McCutcheon, M.S. Capel, and V. Ramakrishnan. 1999. Structure of a bacterial 30S ribosomal subunit at 5.5 ${\AA}$ resolution. Nature 400, 833- 840 https://doi.org/10.1038/23631
  4. Dinos, G., D.N. Wilson, Y. Teraoka, W. Szaflarski, P. Fucini, D. Kalpaxis, and K.H. Nierhaus. 2004. Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. Mol. Cell. 13, 113-124 https://doi.org/10.1016/S1097-2765(04)00002-4
  5. Gutell, R.R., N. Larsen, and C.R. Woese. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 58, 10-26
  6. Higuchi, R. 1989. Using PCR to engineer DNA, p. 61-70. In H.A. Erlich (ed.). PCR Technology, Stockton Press, New York, USA
  7. Kim, H.-M., J.-H. Yeom, H.-J. Ha, and K. Lee. 2007. Functional analysis of the residues C770 and G771 of E. coli 16S rRNA implicated in forming the intersubunit bridge B2c of the ribosome. J. Microbiol. Biotechnol. 17, 1204-1207
  8. Lee, K., C.A. Holland-Staley, and P.R. Cunningham. 1996. Genetic analysis of the Shine-Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 2, 1270-1285
  9. Lee, K., S. Varma, J. Santalucia, Jr., and P.R. Cunningham. 1997. In vivo determination of RNA structure-function relationships: analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269, 732-743 https://doi.org/10.1006/jmbi.1997.1092
  10. Lee, K., C.A. Holland-Staley, and P.R. Cunningham. 2001. Genetic approaches to studying protein synthesis: Effects of mutations at Ψ516 and A535 in Escherichia coli 16S rRNA. J. Nutr. 131, 2994S-3004S
  11. Mankin, A.S. 1997. Pactamycin resistance mutations in functional sites of 16S rRNA. J. Mol. Biol. 274, 8-15 https://doi.org/10.1006/jmbi.1997.1387
  12. Moazed, D. and H.F. Noller. 1986. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47, 985-994 https://doi.org/10.1016/0092-8674(86)90813-5
  13. Moazed, D. and H.F. Noller. 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389-394 https://doi.org/10.1038/327389a0
  14. Moazed, D., R.R. Samaha, C. Gualerzi, and H.F. Noller. 1995. Specific protection of 16S rRNA by translational initiation factors. J. Mol. Biol. 248, 207-210
  15. Morosyuk, S.V., K. Lee, J. Santalucia, Jr., and P.R. Cunningham. 2000. Structure and function of the conserved 690 hairpin in Escherichia coli 16S ribosomal RNA: analysis of the stem nucleotides. J. Mol. Biol. 300, 113-126 https://doi.org/10.1006/jmbi.2000.3852
  16. Muralikrishna, P. and E. Wickstrom. 1989. Escherichia coli initiation factor 3 protein binding to 30 S ribosomal subunits alters the accessibility of nucleotides within the conserved central region of 16S rRNA. Biochemistry 28, 7505-7510 https://doi.org/10.1021/bi00445a002
  17. Yusupov, M.M., G.Z. Yusupova, A. Baucom, K. Lieberman, T.N. Earnest, J.H. Cate, and H.F. Noller. 2001. Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883-896 https://doi.org/10.1126/science.1060089
  18. Wimberly, B.T., D.E. Brodersen, W.M. Clemons, Jr., R.J. Morgan- Warren, A.P. Carter, C. Vonrhein, T. Hartsch, and V. Ramakrishnan. 2000. Structure of the 30S ribosomal subunit. Nature 407, 327-339 https://doi.org/10.1038/35030006