Correlation between Semiquantitative Myocardial Perfusion Score and Absolute Myocardial Blood Flow in $^{13}N-Ammonia$ PET

$^{13}N$-암모니아 PET에서 반정량적 심근관류 점수와 절대적 심근혈류량의 상관관계

  • Lee, Byeong-Il (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Kim, Kye-Hun (Department of Cardiovascular Medicine, Chonnam National University Medical School) ;
  • Kim, Jung-Young (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Kim, Su-Jin (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Jae-Sung (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Min, Jung-Joon (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Song, Ho-Chun (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Bom, Hee-Seung (Department of Nuclear Medicine, Chonnam National University Hospital)
  • 이병일 (전남대학교병원 핵의학과) ;
  • 김계훈 (전남대학교병원 순환기내과) ;
  • 김정영 (전남대학교병원 핵의학과) ;
  • 김수진 (서울대학교 의과대학 핵의학교실) ;
  • 이재성 (서울대학교 의과대학 핵의학교실) ;
  • 민정준 (전남대학교병원 핵의학과) ;
  • 송호천 (전남대학교병원 핵의학과) ;
  • 범희승 (전남대학교병원 핵의학과)
  • Published : 2007.06.30

Abstract

Purpose: $^{13}N$-ammonia is a well known radiopharmaceutical for the measurement of a myocardial blood flow (MBF) non-invasively using PET-CT. In this study, we investigated a correlation between MBF obtained from dynamic imaging and myocardial perfusion score (MPS) obtained from static imaging for usefulness of cardiac PET study. Methods: Twelve patients (11 males, 1 female, $57.9{\pm}8.6$ years old) with suspicious coronary artery disease underwent PET-CT scan. Dynamic scans (6 min: $5\;sec\;{\times}\;12,\;10\;sec\;{\times}\;6,\;20\;sec\;{\times}\;3,\;and\;30\;sec\;{\times}\;6$) were initiated simultaneously with bolus injection of 11 MBq/kg $^{13}N-ammonia$ to acquire rest and stress image. Gating image was acquired during 13 minutes continuously. Nine-segment model (4 basal walls, 4 mid walls, and apex) was used for a measurement of MBF. Time activity curve of input function and myocardium was extracted from ROI methods in 9 regions for quantification. The MPS were evaluated using quantitative analysis software. To compare between 20-segment model and 9-segment model, 6 basal segments were excluded and averaged segmental scores were used. Results: There are weak correlation between MBF (rest, 0.18-2.38 ml/min/g; stress, 0.40-4.95 ml/min/g) and MPS (rest 22-91%, stress, 14-90%), however the correlation coefficient between corrected MBF and MPS in rest state was higher than stress state (rest r=0.59; stress r=0.80). As a thickening increased, correlation between MBF and MPS also showed good correlation at each segments. Conclusions: Corrected and translated MPS as its characteristics using $^{13}N$-ammonia showed good correlation with absolute MBF measured by dynamic image in this study. Therefore, we showed MPS is one of good indices which reflect MBF. We anticipate PET-CT could be used as useful tool for evaluation of myocardial function in nuclear cardiac study.

목적: $^{13}N$-암모니아는 심근혈류 측정에 유용한 방사성의 약품으로 최근 국내에 도입된 PET/CT를 이용하여 비침습적으로 정량적인 검사를 시행 할 수 있다. 이 연구에서는 $^{13}N$-암모니아를 이용한 동적 영상으로부터 얻은 심근혈류정보와 정적 영상으로부터 얻은 심근관류정보의 상관관계를 살펴봄으로써 심장핵의학 검사의 유용성을 알아보고자 하였다. 방법: 심혈관질환이 의심되어 핵의학 심근관류 검사를 시행한 12명(남 11명, 여 1명, 평균나이 $57.9{\pm}8.6$세)을 대상으로 $^{13}N$-암모니아 검사를 시행하였다. 휴식기와 부하기에서 영상획득을 위하여 $^{13}N$ 암모니아 0.3 mCi/kg를 15초간 순간주사하면서 동시에 동적영상을 6분간(5초씩 12회, 10초씩 6회, 20초씩 3회, 30초씩 6회) 획득하고 이어서 게이트 영상을 13분간 각각 획득하였다. 심근혈류의 측정은 기저부 4분절, 중간부 4분절, 그리고 심첨부로 구성된 9분절 모델을 이용하였으며, 추출한 시간-방사능곡선과 추적자 모델을 사용하여 정량화 하였다. 심근관류는 정량화 분석 소프트웨어를 사용하여 구하였다. 20분절 모델을 9분절 모델과 비교하기 위하여 최기저부 6분절은 제외하고 인접분절의 값을 평균하여 사용하였다. 결과: 심근혈류량(휴식기, 0.18-2.38 ml/min/g; 부하기, 0.4-4.95 ml/min/g)과 심근섭취율(휴식기, 22-91%; 부하기, 14-90%) 간에는 약한 상관관계가 있었으며, 휴식기 보정된 심근관류와 혈류의 상관이 부하기에서보다 더 컸다(휴식기 r=0.59, 부하기 r=0.80). 수축기 심근두꺼워짐이 좋을수록 보정된 관상동맥 혈류예비능과 심근관류 예비능이 상관관계를 보였다. 결론: $^{13}N$-암모니아를 이용한 관류값을 특성에 따라 보정하고 해석하였을 때, 동적영상에서 절대값으로 구한 심근혈류와 좋은 상관관계를 보였다. 따라서 심근관류가 심근혈류를 잘 반영하는 지표임을 보였으므로 심장질환에서의 PET-CT 검사를 유용하게 활용할 수 있을 것으로 기대한다.

Keywords

References

  1. Lee MC. Current status and future perspective of PET. Korean J Nucl Med 2002;36:1-7
  2. Machac J. Cardiac positron emission tomography imaging. Semin Nucl Med 2005;35:17-36 https://doi.org/10.1053/j.semnuclmed.2004.09.002
  3. Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic $H_2^{15}O$ PET and factor analysis. J Nucl Med 2001;42:782-7
  4. Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim SK, Yeo JS, et al. Blind separation of cardiac components and extraction of input function from $H_2^{15}O$ dynamic myocardial PET using independent component analysis. J Nucl Med 2001;42: 938-43
  5. Lee BI, Lee JS, Lee DS, Kang WJ, Lee JJ, Kim SJ, et al. Development of quantification methods for the myocardial blood flow using ensemble independent component analysis for dynamic $H_2^{15}O$ PET. Korean J Nucl Med, 2004;38: 486-91
  6. Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation 1981;63:1259-72 https://doi.org/10.1161/01.CIR.63.6.1259
  7. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelvert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. Circulation 1992;86:1004-17 https://doi.org/10.1161/01.CIR.86.3.1004
  8. Choi Y, Huang SC, Hawkins RA, Kuhle WG, Dahlbom M, Hoh CK, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonia and dynamic PET. J Nucl Med 1993;34:488-97
  9. Kim JY, Choi Y, Lee KH, Kim SE, Choe YS, Ju HK, et al. A refined method for quanfitication of myocardial blood flow using N-13 ammonia and dynamic PET. Korean J Nucl Med 1997;31: 73-82
  10. Cuocolo A, Acampa W, Imbriaco M, De Luca N, Iovino GL, Salvatore M. The many ways to myocardial perfusion imaging. Q J Nucl Med Mol Imaging 2005;49:4-18
  11. Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principle and reproducibility. J Nucl Med 2000;41:712-9
  12. Sharir T, Germano G, Waechter PB, Kavanagh PB, Areeda JS, Gerlach J, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. II: validation and diagnostic yield. J Nucl Med 2000;41:720-7
  13. Germano G, Erel J, Jewin H, Kavanagh PB, Berman DS. Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1997;30:1360-7 https://doi.org/10.1016/S0735-1097(97)00276-3
  14. Vassalli G, Hess OM. Measurement of coronary flow reserve and its role in patient care. Basic Res Cardiol 1998;93: 339-53 https://doi.org/10.1007/s003950050102
  15. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88:62-9 https://doi.org/10.1161/01.CIR.88.1.62
  16. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 1994; 330:1782-8 https://doi.org/10.1056/NEJM199406233302503
  17. Camici PG, Gropler RJ, Jones T, L'Abbate A, Maseri A, Melin JA, et al. The impact of myocardial blood flow quantitation with PET on the understanding of cardiac diseases. Eur Heart J 1996;17: 25-34
  18. Koskenvuo JW, Sakuma H, Niemi P, Toikka JO, Knuuti J, Laine H, et al. Global myocardial blood flow and global flow reserve measurements by MRI and PET are comparable. J Magn Reson Imaging 2001;13:361-6 https://doi.org/10.1002/jmri.1051
  19. Chareonthaitawee P, Kaufmann PA, R++imoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 2001;50: 151-61 https://doi.org/10.1016/S0008-6363(01)00202-4
  20. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979;3:299-308 https://doi.org/10.1097/00004728-197906000-00001