DOI QR코드

DOI QR Code

태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314)

  • 최기선 (국립기상연구소 정책연구팀) ;
  • 김백조 (국립기상연구소 정책연구팀) ;
  • 박종길 (인제대학교 대기환경정보공학과)
  • Choi, Ki-Seon (Policy Research Lab. National Institute of Meteorological Research) ;
  • Kim, Baek-Jo (Policy Research Lab. National Institute of Meteorological Research) ;
  • Park, Jong-Kil (Department of Atmospheric Environment Information Engineering, Inje University)
  • 발행 : 2007.09.30

초록

The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

키워드

참고문헌

  1. Korean Meteorological Administration, 1996, Typhoon White Book, 22pp
  2. DeMaria M., Kaplan J, 1999, An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326-337 https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2
  3. Hanley D. E., Molinari J, Keyser D., 2001, A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 2570-25134 https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2
  4. DeMaria M., Baik J-J, Kaplan J, 1993, Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J Atmos. Sci., 50, 1133-1147 https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2
  5. Wu c.-c., Cheng H.- J, 1999, An observational study of environmental influences on the intensity changes of Typhoons Flo and Gene. Mon. Wea. Rev., 127, 3003-3031 https://doi.org/10.1175/1520-0493(1999)127<3003:AOSOEI>2.0.CO;2
  6. Bosart W, Bracken E., Molinari J, Velden C. S., Black P. G., 2000, Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea.Rev., 128, 322-352 https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2
  7. Chen L. S., Ding Y. H., 1979, A General Description of Typhoon in the Northwestern Pacific. China Meteorology Press, 491pp
  8. Shi J J., Chang S. W-J., Raman S., 1997, Interaction between Hurricane Florence and an upper-tropospheric westerly trough. J. Atmos.Sci., 54, 1231-1247 https://doi.org/10.1175/1520-0469(1997)054<1231:IBHFAA>2.0.CO;2
  9. Yu H., Kwon H. J., 2005, Effect of TCTrough Interaction on the Intensity Change of the Two Typhoons. Wea. Forecasting, 20, 199-211 https://doi.org/10.1175/WAF836.1
  10. Ritchie E. A, 2002, Environmental effects. Topic Chairman and Rapporteur Reports of the Fifth WMO International Workshop on Tropical Cyclones (IWTC-V), WMO/TD 1136
  11. Thorpe A J., 1986, Synoptic scale disturbances with circular symmetry. Mon. Wea. Rev., 114, 1384-1389 https://doi.org/10.1175/1520-0493(1986)114<1384:SSDWCS>2.0.CO;2
  12. Molinari J.. Skubis S., Vollaro D., Alsheimer F., Willoughby H. E., 1998, Potential vorticity analysis of tropical cyclone intensification. J. Atmos. Sci., 55, 2632-2644 https://doi.org/10.1175/1520-0469(1998)055<2632:PVAOTC>2.0.CO;2
  13. Patrick S., Georgiev C. G., 2005, Weather Analysis and Forecasting, Elsevier academic press, 9pp
  14. Bracken WE., Bosart L. F., 2000, The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon.Wea. Rev., 128, 353-376 https://doi.org/10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2
  15. Bosart L. F., Bartlo J. A., 1991, Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 1979-2013 https://doi.org/10.1175/1520-0493(1991)119<1979:TSFIAB>2.0.CO;2
  16. Molinari J, Skubis S., Vollaro D., 1995, External influences on hurricane intensity. Part III: Potential vorticity structure. J Atmos. Sci., 52, 3593-3606 https://doi.org/10.1175/1520-0469(1995)052<3593:EIOHIP>2.0.CO;2
  17. Titley D. W, Elsberry R. L., 2000, Large intensity changes in tropical cyclones: A case study of Supertyphoon Flo during TCM-90. Mon. Wea. Rev., 128, 3556-3573 https://doi.org/10.1175/1520-0493(2000)128<3556:LICITC>2.0.CO;2
  18. Rodgers W. S. Olson., Karyampudi V. M., Pierce H. F., 1998, Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126, 1229-1247 https://doi.org/10.1175/1520-0493(1998)126<1229:SDLHDA>2.0.CO;2
  19. Drury S., Evans J L., 1998, Modeling of tropical cyclone intensification as a result of interaction with middle-latitude troughs. Preprints, Symp. on Tropical Cyclone Intensity Change, Phoenix, AZ, Amer. Meteor. Soc., 65-72
  20. Lander M. A, 1994a, An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636-651 https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2
  21. Wang B, Chan J C. L., 2002, How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific. J Climate, 15, 1643-1658 https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
  22. Montgomery M. T., Farrell B. F., 1993, Tropical cyclone formation. J Atmos. Sci., 50, 285- 310 https://doi.org/10.1175/1520-0469(1993)050<0285:TCF>2.0.CO;2
  23. Molinari J, Vollaro D, 1989, External influences on hurricane intensity. Part I: Outflow layer eddy momentum fluxes. J Atmos. Sci., 46, 1093-1105 https://doi.org/10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2
  24. Zehr R. M., 1992, Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep.NESDIS 61, 181pp