DOI QR코드

DOI QR Code

Optimal Aluminizing Coating on Incoloy 909

Incoloy 909 합금의 최적 알루미나이징 확산 코팅

  • Kwon, S.W. (Sewoncellontech Co. Ltd) ;
  • Yoon, J.H. (Department of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Joo, Y.K. (Department of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Cho, T.Y. (Department of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Ahn, J.S. (Sermatech Korea Co. Ltd.) ;
  • Park, B.K. (School of Materials Science and Engineering Pusan National University)
  • 권순우 (세원셀론텍㈜) ;
  • 윤재홍 (창원대학교 나노신소재공학부) ;
  • 주윤곤 (창원대학교 나노신소재공학부) ;
  • 조동율 (창원대학교 나노신소재공학부) ;
  • 안진성 (써머텍코리아㈜) ;
  • 박봉규 (부산대학교 재료공학부)
  • Published : 2007.08.31

Abstract

An Fe-Ni-Co based superalloy Incoloy 909 (Incoloy 909) has been used for gas turbine engine component material. This alloy is susceptible to high temperature oxidation and corrosion because of the absence of corrosion resistant Cr. For the improvement of durability of the component of Incoloy 909 aluminizing-chromate coating by pack cementation process has been investigated at relatively low temperature of about $550^{\circ}C$ to protect the surface microstructure and properties of Incoloy 909 substrate. As a previous study to aluminizing-chromate coating by pack cementation of Incoloy 909, the optimal aluminizing process has been investigated. The size effects of source Al powder and inert filler $Al_O_3$ powder and activator selection have been studied. And the dependence of coating growth rate on aluminizing temperature and time has also been studied. The optimal aluminizing process for the coating growth rate is that the mixing ratio of source Al powder, activator $NH_4Cl$ and filler $Al_O_3$ are 80%, 1% and 19% respectively at aluminizing temperature $552^{\circ}C$ and time 20 hours.

Keywords

References

  1. J. R. Kattus, Aerospace Structural Metals Handbook (September, 1989) Code 4219, p 1-6
  2. X. Guo, K. Kusabiraki, S. Saji, Scripta Mater. 44(2001) No. 1, 55-60 https://doi.org/10.1016/S1359-6462(00)00576-5
  3. Kiyoshi Kusabiraki et al., ISIJ International, 37(1) (1997) 80-86 https://doi.org/10.2355/isijinternational.37.80
  4. Z. D. Xiang, P. K. Datta, Matal Science and Engineering, A00 (2003) 1-9
  5. H. L. Huang, Y. Z. Chen, D. Gan Materials Science and Engineering A, 328(1-2) (2002) 238-244 https://doi.org/10.1016/S0921-5093(01)01699-9
  6. 윤재홍, 안진성, 허인창, 김인수, '항공기 엔진 및 발전용 가스터빈 압출기 핵심부품의 장수면화를 위한 알루미나이징-크로메이트 복합 확산 코팅 처리 공정기술개발 및 평가', 2004, 창원대학교
  7. G. Navas, L. Viloria, Surface and Coatings Technology, 94-95 (1997) 161-167 https://doi.org/10.1016/S0257-8972(97)00481-7
  8. Y. H. Sohn et al., Surface and Coatings Technology, 146-147 (2001) 132-139
  9. 남기석, 변응선, 기계와 재료, 11 (1999) 77-93
  10. M. Ohring, 'Material Science of Thin Film', 2nd Ed, p 395
  11. F. A. Corton, G. Wilkinson, 'Advance Inorganic Chemisty', 5th Ed., p 208-233, Wiley Intersience
  12. T. B. Massalski, 'Binary Alloy Phase Diagrams', Vol. 1 p. 112, 142