Development of a Protein Secretion System with the Application of Sec-dependent Protein Secretion Components

  • Kim, Sam-Woong (Division of Biological Sciences, Pusan National University) ;
  • Kim, Young-Hee (Division of Biological Sciences, Pusan National University) ;
  • Yoo, Ah-Young (Division of Biological Sciences, Pusan National University) ;
  • Yu, Jong-Earn (Division of Biological Sciences, Pusan National University) ;
  • Hur, Jin (College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, John-Hwa (College of Veterinary Medicine, Chonbuk National University) ;
  • Cha, Jae-Ho (Division of Biological Sciences, Pusan National University) ;
  • Kang, Ho-Young (Division of Biological Sciences, Pusan National University)
  • Published : 2007.08.30

Abstract

In order to induce high levels of protein secretion, we have constructed a recombinant plasmid, designated pBP244, into which was incorporated key components of the type-II See-dependent secretion system, including LepB (signal peptidase), SecA (ATPase), and SecB (chaperone). The biological activities of the LepB, SecA, and SecB components expressed from genes harbored by pBP244 appeared to play their normal roles. In order to evaluate the protein secretion, a pspA (Streptococcus $\underline{p}neumoniae\;\underline{s}urface\;\underline{p}rotein\;\underline{A}$) gene was cloned into pBP244, resulting in pBP438. S. typhimurium harboring pBP438 grown until the stationary phase, secreted a higher level of PspA into the culture supernatants than did the strain harboring pYA3494. The strain harboring pBP438 secreted a supernatant amount 1.71-fold, a periplasmic space amount 1.47-fold, and an outer membrane amount 1.49-fold higher than that of pYA3494. S. typhimurium ${\chi}8554$ kept the $Asd^+$ plasmid pBP244 and pBP438 for 60 generations in LB broth harboring DAP, thereby indicating that pBP244 and pBP438 were quite stable in the Salmonella strain.

Keywords

References

  1. Akita, M., S. Sasaki, S. Matsuyama, and S. Mizushima. 1990. SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. J. Biol. Chem. 265: 8164-8169
  2. Barbosa, M. D., S. Lin, J. A. Markwalder, J. A. Mills, J. A. DeVito, C. A. Teleha, V. Garlapati, C. Liu, A. Thompson, G. L. Trainor, M. G. Kurilla, and D. L. Pompliano. 2002. Regulated expression of the Escherichia coli lepB gene as a tool for cellular testing of antimicrobial compounds that inhibit signal peptidase I in vitro. Antimicrob. Agents Chemother. 46: 113549-113554
  3. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293-300
  4. Cho, S.-A., I. S. Lee, J.-H. Park, S.-H. Seok, H.-Y. Lee, D.-J. Kim, M.-W. Back, S.-H. Lee, S.-J. Hur, S.-J. Ban, Y.-K. Lee, and J.-H. Park. 2005. Safety and immunogenicity of Salmonella enterica serovar typhimurium llaB in mice. J. Microbiol. Biotechnol. 15: 609-615
  5. Choi, J. H., J. I. Choi, and S. Y. Lee. 2005. Display of proteins on the surface of Escherichia coli by C-terminal deletion fusion to the Salmonella typhimurium OmpC. J. Microbiol. Biotechnol. 15: 141-146
  6. Collier, D. N. 1993. SecB: A molecular chaperone of Escherichia coli protein secretion pathway. Adv. Prot. Chem. 44: 151-193 https://doi.org/10.1016/S0065-3233(08)60567-7
  7. Collier, D. N., V. A. Bankaitis, J. B. Weiss, and P. J. Bassford Jr. 1988. The antifolding activity of SecB promotes the export of the E. coli maltose-binding protein. Cell 53: 273- 283 https://doi.org/10.1016/0092-8674(88)90389-3
  8. Curtiss, R. 3rd. 1965. Chromosomal aberrations associated with mutations to bacteriophage resistance in Escherichia coli. J. Bacteriol. 89: 28-40
  9. Curtiss, R. 3rd. and S. M. Kelly. 1989. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55: 3035-3043
  10. Dalbey, R. E. and W. Wicker. 1985. Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J. Biol. Chem. 260: 15925-15931
  11. de Keyzer, J., C. van der Does, and A. J. Driessen. 2003. The bacterial translocase: A dynamic protein channel complex. Cell. Mol. Life Sci. 60: 2034-2052 https://doi.org/10.1007/s00018-003-3006-y
  12. Desvaux, M., N. J. Parham, A. Scott-Tucker, and I. R. Henderson. 2004. The general secretory pathway: A general misnomer? Trends Microbiol. 12: 306-309 https://doi.org/10.1016/j.tim.2004.05.002
  13. Dibb, N. J. and P. B. Wolfe. 1986. lep Operon proximal gene is not required for growth or secretion by Escherichia coli. J. Bacteriol. 166: 83-87 https://doi.org/10.1128/jb.166.1.83-87.1986
  14. Dietrich, G., I. Gentschev, J. Hess, B. Knapp, S. H. E. Kaufmann, and W. Goebel. 2001. From evil to good: A cytolysin in vaccine development. Trends Microbiol. 9: 23-28 https://doi.org/10.1016/S0966-842X(00)01893-X
  15. Duong, F. and W. Wickner. 1997. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. 16: 2756-2768 https://doi.org/10.1093/emboj/16.10.2756
  16. Filloux, A. 2004. The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta 1694: 163-179 https://doi.org/10.1016/j.bbamcr.2004.05.003
  17. Galen, J. E. and M. M. Levine. 2001. Can a 'flawless' live vector vaccine strain be engineered? Trends Microbiol. 9: 372-376 https://doi.org/10.1016/S0966-842X(01)02096-0
  18. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  19. Hartl, F.-U., S. Lecker, E. Schiebel, J. P. Hendrick, and W. Wickner. 1990. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63: 269-279 https://doi.org/10.1016/0092-8674(90)90160-G
  20. Inada, T., D. L. Court, K. Ito, and Y. Nakamura. 1989. Conditionally lethal Amber mutations in the leader peptidase gene of Escherichia coli. J. Bacteriol. 171: 585-587 https://doi.org/10.1128/jb.171.1.585-587.1989
  21. Johnson, T. L., J. Abendroth, W. G. Hol, and M. Sandkvist. 2006. Type II secretion: From structure to function. FEMS Microbiol. Lett. 255: 175-186 https://doi.org/10.1111/j.1574-6968.2006.00102.x
  22. Kang, H. Y., J. Srinivasan, and R. Curtiss 3rd. 2002. Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar typhimurium vaccine. Infect. Immun. 70: 1739-1749 https://doi.org/10.1128/IAI.70.4.1739-1749.2002
  23. Kaufmann, S. H. E. 1998. Immunity to intracellular bacteria, pp. 1335-1371. In W. E. Paul (ed.), Fundamental Immunology. Lippincott-Raven, Philadelphia, PA
  24. Kim, S. J., D. Y. Jun, C. H. Yang, and Y. H. Kim. 2006. Cloning and expression of hpaA gene of Korean strain Helicobacter pylori K51 in oral vaccine delivery vehicle Lactococcus lactis sub. lactis MG1363. J. Microbiol. Biotechnol. 16: 318-324
  25. Kumamoto, C. A. and A. K. Nault. 1989. Characterization of the Escherichia coli protein-export gene secB. Gene 75: 167-175 https://doi.org/10.1016/0378-1119(89)90393-4
  26. Kusters, R., T. De Vrije, E. Breukink, and B. de Kruijff. 1989. SecB protein stabilizes a translocation-competent state of purified prePhoE protein. J. Biol. Chem. 264: 20827- 27830
  27. Lecker, S. H., A. J. M. Driessen, and W. Wickner. 1990. ProOmpA contains secondary and tertiary structure prior to translocation and is shielded from aggregation by association with SecB protein. EMBO J. 9: 2309-2314
  28. Lill, R., K. Cunningham, L. A. Brundage, K. Ito, D. Oliver, and W. Wickner. 1989. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. EMBO J. 8: 961-966
  29. Lill, R., W. Dowhan, and W. Wickner. 1990. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60: 271-280 https://doi.org/10.1016/0092-8674(90)90742-W
  30. Matsumoto, G., H. Mori, and K. Ito. 1998. Roles of SecG in ATP- and SecA-dependent protein translocation. Proc. Natl. Acad. Sci. USA 95: 13567-13572
  31. McDaniel, L. S., G. Scott, J. F. Kearney, and D. E. Briles. 1984. Monoclonal antibodies against protease sensitive pneumococcal antigens can protect mice from fatal infection with Streptococcus pneumoniae. J. Exp. Med. 160: 386-397 https://doi.org/10.1084/jem.160.2.386
  32. McGhee, J. R., J. Mestecky, M. T. Dertzbaugh, J. H. Eldridge, M. Hirasawa, and H. Kiyono. 1992. The mucosal immune system: From fundamental concepts to vaccine development. Vaccine 10: 75-88 https://doi.org/10.1016/0264-410X(92)90021-B
  33. Mcpherson, M. J., P. Quirke, and G. R. Taylor. 1993. PCR, A Practical Approach. IRL Press, pp. 207-209
  34. Nishiyama, K., T. Suzuki, and H. Tokuda. 1996. Inversion of the membrane topology of SecG coupled with SecAdependent preprotein translocation. Cell 85: 71-81 https://doi.org/10.1016/S0092-8674(00)81083-1
  35. Palmer, T., F. Sargent, and B. C. Berks. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol. 13: 175-180 https://doi.org/10.1016/j.tim.2005.02.002
  36. Randall, L. L., T. B. Topping, and S. J. S. Hardy. 1990. No specific recognition of leader peptide by SecB, a chaperone involved in protein export. Science 248: 860-863 https://doi.org/10.1126/science.2188362
  37. Roland, K., R. Curtiss 3rd, and D. Sizemore. 1999. Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis. 43: 429-441 https://doi.org/10.2307/1592640
  38. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning, A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory. Press, Cold Spring Harbor, NY
  39. Shata, M. T., L. Stevceva, S. Agwale, G. K. Lewis, and D. M. Hone. 2000. Recent advances with recombinant bacterial vaccine vectors. Mol. Med. Today 6: 66-71 https://doi.org/10.1016/S1357-4310(99)01633-0
  40. Sonn, C. H., H. R. Yoon, I. O. Seong, M.-R. Chang, Y. C. Kim, H.-C. Kang, S.-C. Suh, and Y. S. Kim. 2006. MethA fibrosarcoma cells expressing membrane-bound forms of IL- 2 enhance antitumor immunity. J. Microbiol. Biotechnol. 16: 1919-1927
  41. Szostak, M. P. and W. Lubitz. 1991. Recombinant bacterial ghosts as multivaccine vehicles, pp. 409-414. In R. M. Chanock et al. (eds.), Modern Approaches to New Vaccines Including Prevention of AIDS, Vaccines 91; Cold Spring Harbor Laboratory Press, New York
  42. Voulhoux, R., G. Ball, B. Ize, M. L. Vasil, A. Lazdunski, L. F. Wu, and A. Filloux. 2001. Involvement of the twinarginine translocation system in protein secretion via the type II pathway. EMBO J. 20: 6735-6741 https://doi.org/10.1093/emboj/20.23.6735
  43. Weiss, J. B., P. H. Ray, and P. J. Bassford Jr. 1988. Purified SecB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. Proc. Natl. Acad. Sci. USA 85: 8978-8982
  44. Witholt, B., M. Boekhout, M. Brock, J. Kingma, H. van Heerikhuizen, and L. de Leij. 1976. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal. Biochem. 74: 160-170 https://doi.org/10.1016/0003-2697(76)90320-1