References
- Albano, R., L. Randers-Eichorn, Q. Chang, W. Bentley, and G. Rao. 1996. Quantitative measurement of green fluorescent protein expression. Biotechnol. Tech. 10: 953-958
- Andersen, D. C. and L. Krummen. 2002. Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 13: 117-123 https://doi.org/10.1016/S0958-1669(02)00300-2
- Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421 https://doi.org/10.1016/S0958-1669(99)00003-8
- Baneyx, F. and M. Mujacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 1399-1408 https://doi.org/10.1038/nbt1029
- Belin, D., L.-M. Guzman, S. Bost, M. Konakova, F. Silva, and J. Beckwith. 2004. Functional activity of eukaryotic signal sequences in Escherichia coli: The ovalbumin family of serine protease inhibitors. J. Mol. Biol. 335: 437-453 https://doi.org/10.1016/j.jmb.2003.10.076
- Chudakov, D. M., S. Lukyanov, and K. A. Lukyanov. 2005. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23: 605-613 https://doi.org/10.1016/j.tibtech.2005.10.005
- Combet, C., C. Blanchet, C. Geourjon, and G. Deleage. 2000. NPS@: Network protein sequence analysis. Trends Biochem. Sci. 25: 147-150 https://doi.org/10.1016/S0968-0004(99)01540-6
- Dedhia, N., R. Richins, A. Mesina, and W. Chen. 1997. Improvement in recombinant protein production in ppGppdeficient Escherichia coli. Biotechnol. Bioeng. 53: 379-386 https://doi.org/10.1002/(SICI)1097-0290(19970220)53:4<379::AID-BIT4>3.0.CO;2-K
- Dong, H., L. Nilsson, and C. G. Kurland. 1995. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J. Bacteriol. 177: 1497-1504 https://doi.org/10.1128/jb.177.6.1497-1504.1995
- Fahnert, B., H. Lilie, and P. Neubauer. 2004. Inclusion bodies: Formation and utilisation. Adv. Biochem. Eng. Biotechnol. 89: 93-142
- Feilmeier, B. J., G. Iseminger, D. Schroeder, H. Webber, and G. J. Phillips. 2000. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J. Bacteriol. 182: 4068-4076 https://doi.org/10.1128/JB.182.14.4068-4076.2000
- Hoffmann, F. and U. Rinas. 2004. Stress induced by recombinant protein production in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89: 73-92
- Hoffmann, F., J. van den Heuvel, N. Zidek, and U. Rinas. 2004. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme Microb. Tech. 34: 235-241 https://doi.org/10.1016/j.enzmictec.2003.10.011
- Huang, H. C., M. Y. Sherman, O. Kandror, and A. L. Goldberg. 2001. The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in Escherichia coli. J. Biol. Chem. 276: 3920-3928 https://doi.org/10.1074/jbc.M002937200
- Kajava, A. V., S. N. Zolov, A. E. Kalinin, and M. A. Nesmeyanova. 2000. The net charge of the first 18 residues of the mature sequence affects protein translocation across the cytoplasmic membrane of Gram-negative bacteria. J. Bacteriol. 182: 2163-2169 https://doi.org/10.1128/JB.182.8.2163-2169.2000
- Khokhlova, O. V. and M. A. Nesmeyanova. 2004. Interdependent effects of the charge of the N-terminal region of the signal peptide, SecA, and SecB on secretion of alkaline phosphatase in Escherichia coli. Mol. Biol. (Mosk) 38: 239-246 https://doi.org/10.1023/B:MBIL.0000023740.66749.b0
- Koster, M., W. Bitter, and J. Tommassen. 2000. Protein secretion mechanisms in Gram-negative bacteria. Int. J. Med. Microbiol. 290: 325-331 https://doi.org/10.1016/S1438-4221(00)80033-8
- Mergulhão, F. and G. Monteiro. 2004. Secretion capacity limitations of the Sec pathway in Escherichia coli. J. Microbiol. Biotechnol. 14: 128-133
- Mergulhão, F., G. Monteiro, G. Larsson, A. Sandem, A. Farewell, T. Nystrom, J. Cabral, and M. Taipa. 2003. Medium and copy number effects on the secretion of human proinsulin in Escherichia coli using the universal stress promoters uspA and uspB. Appl. Microbiol. Biotechnol. 61: 495-501 https://doi.org/10.1007/s00253-003-1232-8
- Mergulhao, F. J., G. A. Monteiro, J. M. Cabral, and M. A. Taipa. 2001. A quantitative ELISA for monitoring the secretion of ZZ-fusion proteins using SpA domain as immunodetection reporter system. Mol. Biotechnol. 19: 239-244 https://doi.org/10.1385/MB:19:3:239
- Mergulhão, F. J., M. A. Taipa, J. M. Cabral, and G. A. Monteiro. 2004. Evaluation of bottlenecks in proinsulin secretion by Escherichia coli. J. Biotechnol. 109: 31-43 https://doi.org/10.1016/j.jbiotec.2003.10.024
- Mergulhão, F. J. M. and G. A. Monteiro. 2005. Recombinant protein secretion in Escherichia coli. Biotechnol. Adv. 23: 177-202 https://doi.org/10.1016/j.biotechadv.2004.11.003
- Mergulhao, F. J. M., G. A. Monteiro, J. M. S. Cabral, and M. A. Taipa. 2004. Design of bacterial vector systems for the production of recombinant proteins in Escherichia coli. J. Microbiol. Biotechnol. 14: 1-14
- Mergulhão, F. J. M., G. A. Monteiro, G. Larsson, M. Bostrom, A. Farewell, T. Nystrom, J. M. S. Cabral, and M. A. Taipa. 2003. Evaluation of inducible promoters on the secretion of a ZZ-Proinsulin fusion protein. Biotechnol. Appl. Biochem. 38: 87-93 https://doi.org/10.1042/BA20030043
- Moks, T., L. Abrahmsen, E. Holmgren, M. Bilich, A. Olsson, M. Uhlen, G. Pohl, C. Sterky, H. Hultberg, S. Josephson, et al. 1987. Expression of human insulin-like growth factor I in bacteria: Use of optimized gene fusion vectors to facilitate protein purification. Biochemistry 26: 5239-5244 https://doi.org/10.1021/bi00391a005
- Nakai, K. and M. Kanehisa. 1991. Expert system for predicting protein localization sites in Gram-negative bacteria. Proteins 11: 95-110 https://doi.org/10.1002/prot.340110203
- Neubauer, P., H. Y. Lin, and B. Mathiszik. 2003. Metabolic load of recombinant protein production: Inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli. Biotechnol. Bioeng. 83: 53-64 https://doi.org/10.1002/bit.10645
- Palacios, J. L., I. Zaror, P. Martinez, F. Uribe, P. Opazo, T. Socias, M. Gidekel, and A. Venegas. 2001. Subset of hybrid eukaryotic proteins is exported by the type I secretion system of Erwinia chrysanthemi. J. Bacteriol. 183: 1346-1358 https://doi.org/10.1128/JB.183.4.1346-1358.2001
- Rosenberg, H. F. 1998. Isolation of recombinant secretory proteins by limited induction and quantitative harvest. Biotechniques 24: 188-191
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed. CSH Press, Cold Spring Harbour
- Sandén, A. M., I. Prytz, I. Tubulekas, C. Forberg, H. Le, A. Hektor, P. Neubauer, Z. Pragai, C. Harwood, A. Picon, J. Teixeira de Mattos, P. Postma, A. Farewell, T. Nystrom, S. Reeh, S. Pedersen, and G. Larsson. 2003. Limiting factors in Escherichia coli fed-batch production of recombinant protein. Biotechnol. Bioeng. 81: 158-166 https://doi.org/10.1002/bit.10457
- Sauvonnet, N., I. Poquet, and A. P. Pugsley. 1995. Extracellular secretion of pullulanase is unaffected by minor sequence changes but is usually prevented by adding reporter proteins to its N- or C-terminal end. J. Bacteriol. 177: 5238-5246 https://doi.org/10.1128/jb.177.18.5238-5246.1995
- Simmons, L. C. and D. G. Yansura. 1996. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat. Biotechnol. 14: 629-634 https://doi.org/10.1038/nbt0596-629
- Stahl, S. and P. A. Nygren. 1997. The use of gene fusions to protein A and protein G in immunology and biotechnology. Pathol. Biol. (Paris) 45: 66-76
- Stanley, N. R., F. Sargent, G. Buchanan, J. Shi, V. Stewart, T. Palmer, and B. C. Berks. 2002. Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol. Microbiol. 43: 1005-1021 https://doi.org/10.1046/j.1365-2958.2002.02797.x
- Yokoyama, S. 2003. Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 7: 39-43 https://doi.org/10.1016/S1367-5931(02)00019-4
- Zhang, J., R. E. Campbell, A. Y. Ting, and R. Y. Tsien. 2002. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3: 906-918 https://doi.org/10.1038/nrm976