DOI QR코드

DOI QR Code

A Novel Method to Estimate Heart Rate from ECG

  • Leu, Jenq-Shiun (Department of Electrical and Control Engineering, National Chiao Tung University) ;
  • Lo, Pei-Chen (Department of Electrical and Control Engineering, National Chiao Tung University)
  • 발행 : 2007.08.30

초록

Heart rate variability (HRV) in electrocardiogram (ECG) is an important index for understanding the health status of heart and the autonomic nervous system. Most HRV analysis approaches are based on the proper heart rate (HR) data. Estimation of heart rate is thus a key process in the HRV study. In this paper, we report an innovative method to estimate the heart rate. This method is mainly based on the concept of periodicity transform (PT) and instantaneous period (IP) estimate. The method presented is accordingly called the "PT-IP method." It does not require ECG R-wave detection and thus possesses robust noise-immune capability. While the noise contamination, ECG time-varying morphology, and subjects' physiological variations make the R-wave detection a difficult task, this method can help us effectively estimate HR for medical research and clinical diagnosis. The results of estimating HR from empirical ECG data verify the efficacy and reliability of the proposed method.

키워드

참고문헌

  1. R.E. Kleiger, P.K. Stein, and J.T. Bigger, 'Heart rate variability: Measurement and clinical utility,' Annals of Noninvasive Electrocardiology, vol. 10, no. 1, pp. 88-101, 2005 https://doi.org/10.1111/j.1542-474X.2005.10101.x
  2. N. Kannathal, U.R. Acharya, C.M. Lim, P.K. Sadasivan, and S.S. Iyengar, 'Cardiac health diagnosis using heart rate variability signals - A comparative study,' Intelligent Automation and Soft Computing, vol. 10, no. 1, pp. 23-36, 2004 https://doi.org/10.1080/10798587.2004.10642863
  3. Y.R. Zhong, H.L. Wang, K.H. Ju, K..M. Jan, and K.H. Chon, 'Nonlinear analysis of the separate contributions of autonomic nervous systems to heart rate variability using principal dynamic modes,' IEEE Transactions on Biomedical Engineering, vol. 51, no. 2, pp. 255-262, 2004 https://doi.org/10.1109/TBME.2003.820401
  4. P. Sleight, 'The importance of the autonomic nervous system in health and disease,' Australian and New Zealand Journal of Medicine, vol. 27, no. 4, pp. 467-473, 1997 https://doi.org/10.1111/j.1445-5994.1997.tb02220.x
  5. S. Akselrod, D. Gordon, F.A. Ubel, D.C. Shannon, A.C. Berger, and R.J. Cohen, 'Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control,' Science, vol. 213, no. 4504, pp. 220-222, 1981 https://doi.org/10.1126/science.6166045
  6. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, 'Heart rate variability: Standards of measurement, physiological interpretation, and clinical use,' Circulation, vol. 93, pp. 1043-1065, 1996 https://doi.org/10.1161/01.CIR.93.5.1043
  7. W.P. Holsinger, K.M. Kempner, and M.H. Miller, 'A QRS preprocessor based on digital differentiation,' IEEE Transactions on Biomedical Engineering, vol. 18, pp. 212-217, 1971 https://doi.org/10.1109/TBME.1971.4502834
  8. O. Pahlm, and L. Sommo, 'Software QRS detection in ambulatory monitoring-a review,' Medical & Biological Engineering and Computing, vol. 22, pp. 289-297, 1984 https://doi.org/10.1007/BF02442095
  9. J. Pan, and W.J. Tompkins, 'A real time QRS detection algorithm,' IEEE Transactionson Biomedical Engineering, vol. 32, pp. 230-235, 1985 https://doi.org/10.1109/TBME.1985.325532
  10. G.M. Friesen, T.C. Jannett, M.A. Jadallah, S.L. Yates, S.R. Quint, and H.R. Nagle, 'A comparison of the noise sensitivity of nine QRS detection algorithm,' IEEE Transactions on Biomedical Engineering, vol. 37, pp. 85-98, 1990 https://doi.org/10.1109/10.43620
  11. F.rtet, A.I. Hernandez, and G.Carrault, 'Evaluation of real-time QRS detection algorithms in variable contexts,' Medical and Biological Engineering and Computing, vol 43, no. 3, pp. 379-385, 2005 https://doi.org/10.1007/BF02345816
  12. P.E. Trahanlas, 'An approach to QRS complex detection using mathematical morphology,' IEEE Transactions on Biomedical Engineering, vol. 40, no. 2, pp. 201-205, 1993 https://doi.org/10.1109/10.212060
  13. K.I. Panoulas, L.J. Hadjileontiadis, and S.M. Panas, 'Enhancement of R-wave detection in ECG data analysis using higher-order statistics,' in Proc. 23th IEEE Annual EMBS International Conference, Turkey, Oct. 2001, vol. 1, pp. 344-347
  14. S.W. Chen, H.C. Chen, and H.L. Chan, 'A real-time QRS-detection method based on moving-averaging incorporating with wavelet denoising,' Computer Methods and Programs in Biomedicine, vol. 82, no. 3, pp. 187-195, 2006 https://doi.org/10.1016/j.cmpb.2005.11.012
  15. G. Vijaya, V. Kumar, and H.K. Verma, 'ANN- based QRS-complex analysis of ECG,' Journal of Medical Engineering & Technology, vol. 22, no. 4, pp. 160-167, 1998 https://doi.org/10.3109/03091909809032534
  16. G. Vijaya, V. Kumar, and H.K. Verma, 'Artificial neural network based wave complex detection in electrocardiograms,' International Journal of Systems Science, vol. 28, no. 2, pp. 125-132, 1997 https://doi.org/10.1080/00207729708929370
  17. Z.S. Wang, and J.D.Z. Chen, 'Robust ECG R-R wave detection using evolutionary programming based fuzzy inference system (EPFIS), and application to assessing brain-gut interaction,' IEE Proc.-Sci. Meas. Technol., vol. 147, no. 6, pp. 351-356, 2000 https://doi.org/10.1049/ip-smt:20000852
  18. S. Kadambe, R. Murray, and G.F. Boudreaux-Bartels, 'Wavelet transform-based QRS complex detector,' IEEE Transactions on Biomedical Engineering, vol. 46, no. 7, pp. 838-848, 1999 https://doi.org/10.1109/10.771194
  19. I.R. Legarreta, P.S. Addison, N. Grubb, G.R. Clegg, C.B. Robertson, K.A.A. Fox, and J.N. Watson, 'R-wave detection using continuous wavelet modulus maxima,' IEEE Computers in Cardiology, vol. 30, pp. 565-568, 2003
  20. J.W. Lee, K.S. Kim, B. Lee, B. Lee, and M.H. Lee, 'A real time QRS detection using delay-coordinate mapping for the microcontroller implementation,' Annals of Biomedical Engineering, vol. 30, no. 9, pp. 1140-1151, 2002 https://doi.org/10.1114/1.1523030
  21. R. Poli, S. Cagnoni, and G. Valli, 'Genetic design of optimum linear and nonlinear QRS detectors,' IEEE Transactions on Biomedical Engineering, vol. 42, no. 11, pp. 1137-1141, 1995 https://doi.org/10.1109/10.469381
  22. J. Lee, H.R. Yoon, K.J. Lee, 'A new QRS detection algorithm using index function based on resonance theory,' Journal of Biomedical Engineering Research, vol. 24, no. 2, pp. 107-112, 2003
  23. C. Meyer, J.F. Gavela, and M. Harris, 'Combining algorithms in automatic detection of QRS complexes in ECG signals,' IEEE Transactions on Information Technology in Biomedicine, vol. 10, no. 3, pp. 468-475, 2006 https://doi.org/10.1109/TITB.2006.875662
  24. A.K. Barros, and N. Ohnishi, 'Heart instantaneous frequency (HIF): An alternative approach to extract heart rate variability,' IEEE Transactions on Biomedical Engineering, vol. 48, no. 8, pp. 850-855, 2001 https://doi.org/10.1109/10.936361
  25. T. Ravichandran, M.R. Reddy, and A. Avudainayagam, 'Estimation and power spectral analysis of heart instantaneous frequency (HlF) - a wavelet approach,' in Proc. TENCON 2003 Conference on Convergent Technologies for Asia-Pacific Region, Bangalore India, Oct. 2003, vol. 1, pp. 223-226
  26. W.A. Sethares and T.W. Staley, 'Periodicity transforms,' IEEE Transactions on Signal Processing, vol. 47, no. 11, pp. 2953-2964, 1999 https://doi.org/10.1109/78.796431
  27. P.C. Lo and J.S. Leu, 'Quantification of pseudo-periodicity of alpha rhythm in meditation EEG,' Journal of Medical and Biological Engineering, vol. 25, no. 1, pp. 7-13
  28. M. Arif and W. Aziz, 'Application of threshold- based acceleration change index (TACI) in heart rate variability analysis,' Physiol. Meas., vol. 26, pp. 653-665, 2005 https://doi.org/10.1088/0967-3334/26/5/007
  29. H. Kawahara, 'Speech representation and transformation using adaptive interpolation of weighted spectrum: vocoder revisited,' in Proc. ICASSP 97, Germany, 1997, vol. 2, pp.1303-1306
  30. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, and H.E. Stanley, 'PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,' Circulation, vol. 101, no. 23, pp. e215-e22, 2000 https://doi.org/10.1161/01.CIR.101.23.e215
  31. X. Hu, and V. Nenov, 'A single-lead ECG enhancement algorithm using a regularized data- driven filter,' IEEE Transactions on Biomedical Engineering, vol. 53, no. 2, pp. 347-351, 2006 https://doi.org/10.1109/TBME.2005.862529
  32. Y.C. Pu, and R.P. Patterson, 'Comparison of R-wave detection errors of four wireless heart rate belts in the presence of noise,' Physiological Measurement, vol. 24, no. 4, pp. 913-924, 2003 https://doi.org/10.1088/0967-3334/24/4/008
  33. L. Hejjel, 'Suppression of power-line interference by analog notch filtering in the ECG signal for heart rate variability analysis: to do or not to do?,' Medical Science Monitor, vol. 10, no. 1, pp. 6-13, 2004
  34. D. Chemla, J. Young, F. Badilini, P. Malson- Blanche, H. Affres, Y. Lecarpentier, and P. Chanson, 'Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients,' International Journal of Cardiology, vol. 104, no. 3, pp. 307-313, 2005 https://doi.org/10.1016/j.ijcard.2004.12.018
  35. M. Karrakchou, J.M. Vesin, S. Laberer, and E. Pruvot, 'Analysis of heart rate variability: comparison between spectra obtained from ECG and finger blood pressure,' in Proc. 14th IEEE Annual EMBS International Conference, Oct. 1992, vol. 2, pp. 559-560