Performance Enhancement of Marker Detection and Recognition using SVM and LDA

SVM과 LDA를 이용한 마커 검출 및 인식의 성능 향상

  • 강선경 (원광대학교 컴퓨터공학과) ;
  • 소인미 (원광대학교 컴퓨터공학과) ;
  • 김영운 (원광대학교 컴퓨터공학과) ;
  • 이상설 (원광대학교 전기전자 및 정보공학부) ;
  • 정성태 (원광대학교 전기전자 및 정보공학부)
  • Published : 2007.07.30

Abstract

In this paper, we present a method for performance enhancement of the marker detection system by using SVM(Support Vector Machine) and LDA(Linear Discriminant Analysis). It converts the input image to a binary image and extracts contours of objects in the binary image. After that, it approximates the contours to a list of line segments. It finds quadrangle by using geometrical features which are extracted from the approximated line segments. It normalizes the shape of extracted quadrangle into exact squares by using the warping technique and scale transformation. It extracts feature vectors from the square image by using principal component analysis. It then checks if the square image is a marker image or a non-marker image by using a SVM classifier. After that, it computes feature vectors by using LDA for the extracted marker images. And it calculates the distance between feature vector of input marker image and those of standard markers. Finally, it recognizes the marker by using minimum distance method. Experimental results show that the proposed method achieves enhancement of recognition rate with smaller feature vectors by using LDA and it can decrease false detection errors by using SVM.

본 논문에서는 SVM(Support Vector Machine)과 LDA(Linear Discriminant Analysis)를 이용하여 사각형 형태 마커 검출 및 인식의 성능을 향상시키는 방법을 제안한다. 본 논문의 방법에서는 사각형 형태의 마커 검출을 위하여 입력 영상을 이진 영상으로 변환하고 객체들의 윤곽선을 추출한 다음에 윤곽선을 선분으로 근사화 한다. 근사화된 선분으로부터 기하학적 특징을 이용하여 사각형을 찾는다. 마커의 사각형 영역을 찾은 다음에는 워핑 기법과 확대/축소 변환을 이용하여 사각형 영상을 정사각형 형태로 정규화한다. 정사각형 형태로 정규화한 다음에는 주성분 분석을 적용하여 특징 벡터의 크기를 줄인 다음에 SVM을 이용하여 마커 영상인지 아닌지를 검사한다. 마커 영상으로 판별된 영상에 대하여 LDA를 적용하여 특징 벡터의 크기를 더 줄이고 표준 마커에 대한 특징 벡터와의 최소 거리법에 의해 마커의 종류를 인식한다. 인식 실험 결과 SVM을 사용함으로써 마커 검출의 오류를 줄일 수 있었고 LDA를 사용함으로써 특징 벡터의 크기는 줄어들고 인식률이 높아짐을 알 수 있었다.

Keywords