DOI QR코드

DOI QR Code

A Study on Neural Networks Forecast Model of Deep Excavation Wall Movements

인공신경망 기법을 활용한 굴착공사 흙막이 변위량 예측에 관한 연구

  • 신한우 (목포대학교 건축공학부 건축공학) ;
  • 김광희 (목포대학교 건축공학부 건축공학) ;
  • 김용석 (목포대학교 건축공학부 건축공학)
  • Published : 2007.09.20

Abstract

To predict deep excavation wall movements is important in the urban areas considering the cost and the safety in construction. Failing to estimate deep excavation wall movements in advance causes too many problems in the projects. The purpose of this study is to propose the forecast model of deep excavation wall movements using artificial neural networks. The data of the Deep Excavation Wall Movements which were done form Long research is used of Artificial neural networks training and apply the real construction work measured data to the Artificial neural networks model. Applying the artificial neural networks to forecast the deep excavation wall movements can significantly contribute to identifying and preventing the accident in the overall construction work.

Keywords

References

  1. 김광열, 박우열, 강경인, Neural Network를 이용한 흙막이 공법 선정 시스템에 관한연구 , 대한건축학회 논문집(구조계), vol.16, no.5, 2000. 5
  2. 김민석, 서장우, 박우열, 서덕석, 강경인, 지하토공사에 있어서의 건축공사 계측관리의 개선방안에 관한연구, 대한건축학회 논문집(구조계), vol.17, no.10, 2001.10
  3. 김재엽, 박우열, 강경인, 건축공사 흙막이벽체 공법의 선정을 위한 신경망시스템 개발 연구, 대한건축학회논문집(구조계), vol.18, no.10, 2002.10
  4. 김재엽, 박우열, 김광희, 김중구, 사례기반추론을 이용한 흙막이공법 선정모델에 관한연 구, 한국건설관리학회 논문집, vol.5, no5, 2004.10
  5. 김재엽, 서장우, 강경인, 신경망을 이용한 흙막이 지보공공법 선정모델 개발에 관한연구, 대한건축학회논문집(구조계), vol.19, no.5, 2003.5
  6. 박성재, 정경환, 지하굴토 지보공의 계측 및 해석(정보화 시공)에 관한 연구, 대한토목학회 논문집, vol.15, no.5, pp. 1381-1395, 1995.
  7. 오정환 외 3인, 지반굴착 흙막이공의 정보화시공 종합관리 시스템, 한국지반공학회 논문집, vol.18, no.2, pp. 51-64, 2002.
  8. 장기태, 한희수, 유병선, 광섬유 센서와 지중경사계를 이용한 사면의 거동 분석, 한국지반공학회 논문집, vol.19, no.6, pp. 397-406, 2003.
  9. Christopher M. Ballard and Stuart S. Chen, An Internet Structural Monitoring System, Intelligent Civil Engineering Materials and Structures: ASCE Conference Preceeding, pp. 229-242. 1997.
  10. Gwang-Hee, Kim, Jie-Eon Yoon, Sung-Hoon An, Hun-Hee Cho and Kyung-In Kang, Neural network model incorporating a genetic algorithm in estimating construction costs, Building and Environment, Volume 39, Issue 11, pp. 1333-1340, 2004. 11. https://doi.org/10.1016/j.buildenv.2004.03.009
  11. Gwang-Hee, Kim, Sung-Hoon, An and Kyung-IN, Kang, Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning, Building and Environment, Volume 39, Issue 10, pp. 1235-1242, 2004. 10. https://doi.org/10.1016/j.buildenv.2004.02.013
  12. Gwang-Hee, Kim, Deok-Suk, Seo, and Kyung-In, Kang, Hybrid Models of Neural Networks and Genetic Algorithms for Predicting Preliminary Cost Estimates, Journal of Computing in Civil Engineering, Volume 19, Issue 2, pp. 208-211, 2005. 4. https://doi.org/10.1061/(ASCE)0887-3801(2005)19:2(208)
  13. J.C. Jan, Shin-Lin Hung, S.Y. Chi, J.C.Chern, Neural Network Forecast Model in Deep Excavation, ASCE Journal of Computing in Civil Engineering, Vol.16, No.1, pp. 59-65, 2002. 1. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:1(59)
  14. Kenji Kimoto, Kazuyoshi Endo, Satoru Iwashita, Mitsuhiro Fujiwara, The application of PDA as mobile computing system on construction management, Automation in Construction, 2004, in-press.
  15. Michael Long, Database for retaining wall and ground movements due to deep excavations, Journal of geotechnical and geoenvironmental engineering, pp. 203-224, 2001.
  16. Min-Yuan Cheng, Chien-Ho Ko, Chih-Hung Chang, Computer-aided DSS for safety monitoring of geotechnical construction, Automation in Construction, Vol 11. pp. 375-390, 2002. https://doi.org/10.1016/S0926-5805(01)00059-0
  17. N.J. Yau, J. B. Yang, Applying case-based reasoning techniques to retaining wall selection, Automation in Construction, vol.7, no.4, 1998.
  18. Peter L. Fuhr, Wireless Interrogation of Instrumented Structures, Condition Monitoring of Materials and Structures: ASCE Conference, pp. 148-163, 2000. Preceeding.