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Abstract This article presents a novel infrastructure for large-memory database processing using
commodity hardware with operating system support. We exploit inexpensive PCs and a high-speed
network capable of Remote Direct Memory Access (RDMA) operations to build a new memory
hierarchy between fast volatile memory and slow disk storage. The new memory hierarchy guarantees
a reasonable response time, and its storage size enables us to run large-memory database systems
with little performance degradation. The proposed architecture has two main components: (1) a remote
memory system inside the Linux kernel to manage other computers’ memory pages efficiently and (2)
a remote memory pager responsible for manipulating remote read/write operations on remote memory
pages. We insist that the proposed architecture is practical enough to support the rigorous demands
of commercial in-memory database systems by demonstrating the performance of publicly available
main-memory databases {(e.g., MySQL) on our prototyped system. The experimental results show very
interesting resuits from the TPC-C benchmark.
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driven by the decreasing price and increasing
capacity of volatile memory, which makes building
computers with large main memories not only
possible, but affordable. Soon, it will not be difficult
to see a terabyte of volatile memory provided as a
buffer pool for a very large database.

Despite the performance advantage, in-memory
database systems are rarely used commercially and
have many issues that need to be addressed for
them to be usable in large 64-bits systems. To
fully utilize the fast random access memory feature,
the indexing structure and data layout should be
designed differently from that of disk-based
database systems to maximize database processing
throughput. This is the problem currently being
addressed by database researchers. However, with
a naive setting of MySQL, we were able to obtain
processing time some magnitutes faster than its
disk-based counterpart, from which we can see the
superior performance of in-memory database
systems.

The most important issue aside from database
design for in-memory databases to be wused
commercially is to find a cost-effective way to
build

affordable price. This is the tradeoff between a

large memory computer systems at an

single expensive, large memory mainframe and

clustered, inexpensive new memory hierarchy
systems. This tradeoff is ascribed to the innate
limitation of in-memory database systems - that is,
the in-memory database must always reside in the
volatile memory lest its performance decline
drastically under overcommitted situations. Hence-
forth, the high cost of large memory systems
which can support up to a terabyte of memory at
the cost of millions of dollars is the only option
remaining for clients to choose from when they
want to run large in-memory databases.

In this article,

hierarchy infrastructure using inexpensive cluster

we propose a new memory

computers interconnected by a multi-gigabit
network interface capable of RDMA operations in
order to satisfy the large quantitative memory
requirement of in-memory database systems. A
new memory hierarchy is constructed on a farm of

cluster computers connected by a very high-speed

network, InfiniBand, which can exert a maximum
bandwidth of 10 Gbps. The main software part,
especially the virtual memory and swap system, is
substantiated inside the Linux kernel using various
RDMA operations

network system.

supported by the InfiniBand

The reason we instrument the operating system
is that current general purpose operating systems
are somewhat inappropriate for supporting large
memory database systems. Given the general pur-
pose services of current OSes, it is worth noting
that the database system itself is a very complex
system, which already includes numerous compo-
nents that overlap with some of the operating
system’s services, such as the buffer management
service for managing memory resources efficiently.
Even worse, the key service to share another
machine’s memory is not implemented successfully
in general purpose operating systems. It, therefore,
seems reasonable to conclude that designing a spe-
cialized operating system is meaningful to support
large memory database systems.

The key design goal of our system is to
construct a new memory hierarchy residing bet—
ween volatile memory and swap disk. The access
time of the new memory hierarchy is faster than
that of disks but slower than that of local memory.
Qur new memory hierarchy currently supports
static configuration among cluster systems, and for
efficiency, we employ a delayed bulk write policy
when we write memory pages to the new memory
hierarchy system. Since the new memory hierarchy
is dependent on the network, it is vulnerable to
network failures, but we assume recovery from
such failures is supported by the database system.

We show that if the size of the new memory
hierarchy is sufficient, for sufficiently large rela-
tions, the performance of in-memory database
systems on the proposed infrastructure is com-
parable to that of pure in-memory database
systems. We demonstrate its performance using
two well-recognized in—-memory database systems,
MySQL with the in-memory option. The rest of
the article is organized as follows. Background
materials, including a brief introduction of the

InfiniBand architecture, are presented in Section 2.
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Section 3 gives a detailed explanation of a new
memory sharing architecture. Section 4 describes
implementation details, and Section 5 reveals very

interesting results of our rigorous experiments.

2. Related Work and Background

2.1 Memory sharing

Memory hierarchy and memory sharing has been
a traditional research topic among many resear-
chers. Closely related work on memory manage-
ment for distributed architectures includes page
placement strategy for distributed shared memory
architectures, and shared virtual memory systems.
The cost of a local memory access is significantly
lower than accessing remote memory. Research
work{1-4] in this area have shown that dynamic
page replacement is an effective solution to the
problem. However, it is not recommended to use
this technique in cluster architectures which rely
heavily on explicit message communications unless
it has special hardware for direct access to remote
memory.

There have been also numerous research work
on a remote memory sharing. Feeley’s work([5]
presents global memory management in a work—
station cluster. The system employs a single, but
distributed memory management algorithm to
manage all cluster-wide memory. The global
memory manager can be regarded as global paging
system, and it thus has global aging mechanism in
applying page replacement policy. But, it involves
explicit inter-node communication to exchange
various control messages.

Comer[6] described a remote memory model in
which the

servers. and remote memory servers. The remote

cluster contains workstations, disk
memory servers were dedicated machines whose
large primary memories could be allocated by
workstations with heavy paging activity. No client-
to—client resource sharing occurred, except through
the servers.

Franklin et al[7] examine the use of remote
memory in a client-server DBMS system. Their
system assumes a centralized database server that
contains the disks for stable store plus a large

memory cache. Clients interact with each other via

a central server. On a page read request, if the
page is not cached in the server's memory, the
server checks whether another client has that page
cached; if so, the server asks that client to forward
its copy to the workstation requesting the read.
Franklin et al. evaluate several variants of this
algorithm using a synthetic database workload.
Dahlin et al[8] evaluate the use of several
algorithms for utilizing remote memory, the best of
which is called N-chance forwarding. Using N-
chance forwarding, when a node is about to replace
a page, it checks whether that page is the last
copy in the cluster; if so, the node forwards that
page to a randomly-picked node, otherwise it
discards the page. Each page sent to remote
memory has a circulation count, N, and the page is
discarded after it has been forwarded to N nodes.
When a node receives a remote page, that page is
its LRU list,

displacing another page on that node; if possible, a

made the youngest on possibly
duplicate page or recirculating page is chosen for
replacement.

2.2 InfiniBand network

InfiniBand is an architecture and specification for
data flow between processors and 1/O devices that
bandwidth than the
Peripheral Component Interconnect (PCI) shared-bus

aims to provide greater
approach used in most of today’s personal com-
puters and servers. Offering throughput of up to 2.5
gigabytes per second and support for up to 64,000
addressable devices, the architecture also promises
better sharing of data between clustered processors.

On InfiniBand, data is transmitted in packets in
the form of a communication unit called a message.
A message can be an RDMA read or write
operation, a channel send or receive message, a
transaction-based operation, or a multicast trans-
mission. The main RDMA interface in a new
memory hierarchy was implemented on IB Gold
which

and management

1.8.0 provided by Mellanox Technologies,
consists of drivers, protocols,
applications from the open source OpenlB software
suite in a simple, ready-to-install package. Of the
software components included in the Mellanox Infi-
niBand Gold Distribution, the OpenlB.org InfiniBand

Driver was modified.
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3. Architecture

As mentioned in the previous section, archi-
tectures of new memory hierarchies to exploit the
concept of remote memory sharing have been
researched for quite a long time. The fundamental
framework we assume in this article is based on
distributed shared memory systems. The proposed
architecture consists of two main components: (1) a
remote memory system and (2) a remote memory
pager. First, the remote memory system can be
viewed as a framework which contains a remote
managing functionality. The management functions
include registrating memory and maintaining a
memory pool, which is a set of remote memory
pages. Second, the remote memory pager mainly
performs the role of page allocator for remote
memory pages. This leads us to make a global
page table for that purpose. In this section, we
describe the architecture and internal mechanism of
our system in detail and explain practical matters
down to the minutest details.

3.1 Memory hierarchy

The starting point to describe the memory
sharing architecture is the memory hierarchy. Our
intention is to create a new memory abstraction
which is larger but slower than local random
access memory. A memory hierarchy including a
newly created memory level is shown in Figure 1.
Unlike traditional memory hierarchy diagrams, we
create an intermediate level between random access
We call
memory, and the entire framework is called the

memory and disk storage. it remote
remote memory system. The new memory level
has numerous interesting characteristics compared

to both random access memory and disk storage.

3

RAM

Level

Remote RAM

Disk ]

Access fime

Figure 1 Various levels and access time of the new

memory hierarchy

First, the access time of remote memory is a
thousand times slower than that of random access
memory, but it is more than a thousand times
faster than that of disk storage. The slow access
time is obviously due to the extra work required to
access remotely located memory pages. The extra
work consists of two main parts -a page recla-
mation mechanism and RDMA read/write operations
on remote pages. The details of these mechanisms
will be described later.

Second, although remote memory has slower
access time than RAM, its access time behavior is
very much like that of RAM in that it can provide
almost uniform access time to its remote pages.
This is due to the InfiniBand network, which has
high bandwidth and low delay. It is thus possible
to access any remote page in a given time bound
with high fidelity, and this is an important cha-
racteristic because it enables us to build a remote
memory system with low delay. In addition to the
above feature, the remote memory system has a
trait that the larger the data transferred, the higher
the net bandwidth. This is a traditional feature of
any network interface, and we exploit the above
feature by adopting a delayed bulk write policy
when we have large data to be sent to a remote
memory space. This enhances the performance of
the remote memory system significantly.

3.2 Remote memory system

This further

software part of the remote memory system. The

section looks inside the core
schematic structure of the remote memory system
is drawn in Figure 2. Figure 2 shows a snapshot
of the remote memory system. Except for the
machine that runs the in-memory database, all
machines are configured to provide a part of their
physical memory area to the remote memory
system.

3.2.1 Memory registration

For each machine, to access another machine's
memory whenever it is required, (1) each machine
has to register its physical memory space as
DMA-able memory to the InfiniBand network
interface card (NIC), (2) the NIC must export its
local memory to all machines and gather other

machines’ memory information by exchanging con-
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Figure 2 Structure of the remote memory system

and (3)
RDMA mechanisms, and its driver should provide

trol messages, the NIC must support
proper RDMA operations to both user processes
and kernel components to access another machine’s
memory directly.

their
system, the

Once all machines complete exporting

memory to the remote memory
in-memory database machine can immediately use
the remote memory through a well-defined
interface. Since the remote memory system relies
heavily on RDMA operations, we define a common
interface for the Linux kernel to access another
machine’s physical memory more easily without
with  the This

zero-interfering access interface can only be made

interfering remote  machine.
possible by exploiting a raw RDMA operation,
which is exported as a kernel API by InfiniBand.
Improvement. Transferring data using an RDMA
operation between two machines requires the kernel
to register two memory spaces, the source and
destination areas, lest the CPU become involved.
Because the InfiniBand network heavily exploits
RDMA operations, it is obvious to see that the
registering overhead cannot be ignored. Therefore,
it is much more efficient for the Linux kernel to

register its entire memory space as DMA-able
memory to the InfiniBand’'s network interface card
at once than to register a candidate memory page
on demand.

To minimize the modification of the Linux virtual
memory system, we rarely modify the main virtual
memory component, i.e., the zone-buddy allocator.
The only part we instrument in the VM system is
the paging_init function and a couple of related
header files in order to set up a physical memory
area to be exported to the remote memory system.
The remaining part of the remote memory system
Detailed
explanations of each part of the remote memory

is implemented as a kernel module.
system are given below.

3.2.2 Memory pool

In the remote memory system, a memory pool
serves as a remote page pool to fulfill remote page
allocation. When an in-memory database machine
needs pages from the remote memory system, the
remote memory system allocates available pages
from the memory pool by looking up a global page
table. Therefore, all cluster computers that parti-
cipate in the remote memory system must be

known to initiate the remote memory sharing
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mechanism. Having exchanged the information, we
can see that pages of each machine that are
exported to the
regarded as the actual remote memory pool. As

remote memory System are
previously stated, our primary goal is to build a
remote memory management system, and security
issues are not within the scope of this article. So
we assume that the cluster machines do not need
to authenticate each other for remote paging to
work, but a machine may crash.

Since we designed the remote memory system
symmetrically, all machines run the same algorithm
and attempt to make choices that are good both
globally and locally. So we divide a machine’s
physical memory space into two segments at
kernel’s boot time. Both segments are configured
as contiguous memory regions, and they are
recognized as the Kkernel’s available memory space
at initial time. The colored region of each memory
space in Figure 2 indicates the second contiguous
memory fragment. We, however, instrumented the
second memory region as non-manageable memory
space by isolating it from the kernel’s accessible
zone list, so that the kernel can see its existence
but cannot use the second contiguous memory
space as available page frames. When the kernel
finishes its initial page frame construction from raw
memory space, all pages on a machine are
classified as being either local pages, which can
only be accessed by a local machine, or global
pages, which are exported to the remote memory
system as available remote page poo! managed by
another machine’s remote memory manager on
behalf of itself.

3.3 Remote memory pager

Having described the remote memory system, it
is now time to focus on the remote memory pager,
particularly as it is articulated with greater details.
In defining the role of the remote memory pager, it
may be useful to begin with an explanation about
some related mechanisms in page allocation. While
we describe each mechanism, we also give the role
of the remote memory pager as well.

3.3.1 Page reclamation

Page reclamation occurs when the virtual memory

management (VMM) system faces a shortage of

available page frames. In a traditional VM system,
when the kernel undergoes such an urgent case, it
usually activates a swapper to initiate a page
reclamation mechanism. Originally, page reclamation
was used to maintain a minimal amount of free
page frames so that the kernel can safely handle
out-of-memory situations. In the event of this
critical situation, the main work is performed by
the swapper process. The main job of the swapper
is to find the most adequate candidate pages to
reclaim to satisfy the current memory allocation
demand. If the swapper gathers enough page
frames from various sources such as dirty buffers
or disk caches, it tries to write them to the swap
space. It then returns the corresponding pages to
the VM system to recover from the memory
shortages.

However, in the remote memory system, the
swapper is replaced to the remote memory pager. It
first demands available pages from the remote
memory system rather than allocate valid swap
space from local swap device, then it writes old
pages to remote pages instead of writing them to
the swap device. If we observe more carefully, we
can easily note that the remote memory pager may
activate two page transmissions, a page-in and
page-out. Logically, page-outs are mostly done in
advance to page-ins because available page frames
are obtained easily only if old page frames go out
to the swap space. We, therefore, replace both
paging activities with our common RDMA inter-
faces to enable the swap in/out to be redirected to
the remote memory page.

When the remote memory pager needs available
remote memory space, it should look up the global
page table maintained by the remote memory sys-
temn, which is responsible for managing metadata
for all remote pages exported from other cluster
machines. The remote pager then gets valid remote
page identifiers for available remote pages. Once It
obtains enough page idetifiers, it starts to send
local page contents to the remote memory pages
directly.

3.3.2 Global page table

The global page table shown in Figure \ref

{global_pte} is the only interface in which the
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Figure 3 Index translation in the global page table

kernel can check for the existence of remote pages
and obtain available remote pages. The role of the
global page table is to maintain the location infor-
mation of all remote pages registered to the
and this

retrieved by the remote memory pager whenever it

memory pool, location information is
needs available remote pages.

The global page table shown in Figure \ref
{global_pte} is a table structure implemented in the
x86\_64 architecture. The table consists of 64
bits-wide entries. Each entry has three partitions:
(1) 8 bits for various flags, (2) 20 bits for a host
identifier, and (3) 36 bits for a remote page index.
Flags represent various states of the corresponding
remote page, such as a valid bit, usage count, and
A host

registration time, and translation from host iden-

page size. identifier is initialized at
tifier to InfiniBand’s physical address of a remote
host is done in our driver routine. The last field is
a remote page index. By default, each index value
is created by four kilobyte units, which is the
standard page size. We can change the unit of size
by setting the page size bit in the flags. The
initialization of the global page table is performed
at boot time and maintained by the remote memory
system. When a new memory space is registered
as remote memory space, the kernel driver dyna-
and fills the
required information for the new pages.

mically allocates proper entries

To find an available remote page identifier, the
remote memory pager uses the swap index as it
did before. The translation of the swap index to
the appropriate global page table entry is performed
in a straightforward way. The position of global

page table entry is indicated by the value of the

swap index. So, it is not hard to extract a page
identifier that contains metadata such as various
flags, a host identifier, and the remote page index
of the remote host.

4. Implementation

The prototyped
implemented for the Linux operating system [9,10].

remote memory system is
Most components are implemented in a straight-
forward way.

4.1 Problem in the Linux Swap System

From a top-down view, the entry point to the
remote memory system starts at the swap index
generation routine. The unique way to find the
location of a remote data page is the swap index.
Sadly,

generation, even in the latest Linux, ie., RedHat

the current implementation of the index

kernel-2.6.13-15, is inappropriate to use as it is.

The current implementation, once contiguously
available index slots are running out, searches a
free index slot linearly from the lowest free slot
position in an index slot array. Therefore, if the
search reaches the end of the swap index array,
the search time might be very sensitive to the
memory access behavior of the running program.

Figure 4 shows the result of our initial expe-
rience with the original index lookup algorithm, and
we can observe very drastic performance degrada-
tion when running in-memory databases for long
time. Even if the total amount of used swap space
(2.7GB) is slightly more than half of the total swap
size (3.5GB), once the searching mode is switched
to the linear scanning mode after 1200 sec, the
algorithm might consume significant amount of
time in searching a free index slot, that is expected
to take constant time. This unexpected pitfall
happens when all free index slots are positioned at
both ends of the index array with a high hit ratio,
and used slots are spread around the middle of the
array with a very low hit ratio. This phenomenon
emphasizes that this optimistically designed linear
algorithm can be easily broken by the program
whose memory access behavior has high spatial
locality.

4.2 Enhancement

Hierarchical bit-vector compression. For efficiency,
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Figure 4 Trace of Loop Count of the Linear Index
Lookup Algorithm. The loop count is traced
at the point where the free swap index slot is
searched. Once the index lookup algorithm is
switched to the linear scanning mode, the
trace has a huge amount of unexpected spikes
due to the memory access behavior of the
MySQL database
system), that shows strong spatial locality.
(0-1700 sec: a data insertion period, 1600-
2600 sec: a delimitation period, and 2600-9000
sec: under the TPC-C benchmark test)

(on the remote memory

we rewrote Linux’'s swap index generation routine
in a space and time efficient manner. We imple-
ment a hierarchical bit-vector compression algorithm
for searching the free index slot or inserting the
one after using it. Each bit represents a single
index slot which points to a single page. Therefore,
to cover maximum 1 terabyte, we implement the
The bit-vector
compression algorithm consumes less than 4MB to

algorithm having 7 hierarchies.

cover 64GB index slots and takes constant time to
flip a used index slot or to find the free index slot
irrespective of the memory access behavior. This
eliminates the problem we met and plays a critical

role in improving overall efficiency.

5. Experiment

In this section, we analyze the performance of
our system using MySQL Cluster. MySQL Cluster
is a technology which enables clustering of
in-memory databases in a shared-nothing system[11].
MySQL Cluster are

and ndb_mgmd. mysqld is the

components of the
ndbd,

Core
mysqld,

process which allows external clients to access the
data in the cluster. ndbd stores data in its memory
and supports replication and fragments. ndb_mgmd
manages other processes in the cluster.

Two different experiments were conducted based
on the type of machines that execute the ndbd
processes. In the case of 32-bit machines, the
maximum database size is between 2GB and 4GB,
while the size of a database in a 64-bit machine is
not limited. We executed a microbenchmark and a
TPC-C-like benchmark on small databases in 32-
bit machines.

5.1 Experiments using 32-bit machines

5.1.1 Experimental Setup

The performance of query execution was mea-
sured with a simple Java program using the Java
Database Connectivity (JDBC) interface. The data-
base for this test has one table. An index is built
on its primary key field of type BIGINT. Seven
experiments were conducted with varying record
sizes (512 bytes, 1kB, 2kB, 4kB, 8kB, 16kB, and
32kB). The following queries were tested:

» Insert a record

« Retrieve a record with a given primary key

and return all columns of the selected record

« Update a record matching a given primary key

* Delete a record matching a given primary key

To compare the performance of our system with
that of a system with sufficient memory, we divide
the experimental setting into Memory Not Shared
and Memory Shared. In the Memory Not Shared
environment, memories are not shared between
machines, ie., the front-end node can use only the
4GB of RAM installed locally. On the other hand,
in the Memory Shared environment, memories are
shared between the front-end node and back-end
nodes, ie.the front-end node can access 3GB of
RAM owned by the back-end nodes as well as
1GB of local RAM. Linux 2.4.30 is modified to
share memory between nodes.

Figure 5 shows the experimental environment of
Memory Shared. Three 32-bit machines are used
to execute MySQL Cluster, and one 32-bit machine
executes client programs. Core components of MySQL
Cluster are installed on the front-end machine
(MySQL Server), which is equipped with 1GB RAM,
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Figure 5 Experimental Setup for 32-bit machines

two hyperthreading-enabled Xeon 3.0GHz CPUs,
and one 80GB IDE disk. Two back-end machines
play the role of memory servers, which export
memory to the MySQL Server node. These machines
have 3GB of memory and one hyperthreading-
enabled Xeon 3.2GHz CPU. The memory servers
export 15GB of 3GB memory to the MySQL
Server. The machine that executes MySQL client
programs has the same specifications as the memory
servers. The MySQL Server, which functions as a
memory client, is connected to the memory servers
by an Infiniband network, which provides 10Gbps
bandwidth, while the MySQL Client is connected to
the MySQL Server by 100Mbps Ethernet.

To measure the impact on the Online Transaction
Processing (OLTP) performance of the database,
another experiment is conducted using BenchmarkSQL
{121, a TPC-C-like benchmark with a Java Swing/
JDBC client. The number of warehouses was set to
15, which required 1.4GB of memory storage. The
number of client sessions was set to 5. This
experiment was also performed in both the Memory
Not Shared environment and the Memory Shared
environment.

5.1.2 Results

Figure 6 shows the query processing performance
when memory is shared and when it is not shared.
Five clients create JDBC connections, then generate
and request queries. Values in the figures represent
the number of queries that each client requested to
process. As shown, Memory Not Shared outper-

Table 1 Performance Ratio (Memory Shared vs.
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Figure 6 Results of the Micro Benchmark

forms Memory Shared because the MySQL Server
node has plentiful memory. In the case of Memory
Shared, if data related to requested queries do not
exist in the local memory, the kernel must fetch
the data from the remote memory to process the
queries. This is the main overhead of our system,
but we think that this overhead is relatively small.

Table 1 shows the performance ratio between
Memory Not Shared and Memory Shared. Regard-
less of the size of rows, the main memory database
management system built on our system executes a
minimum of 80% of the queries executed by its
counterpart system. This implies that although the
amount of remote memory is three times larger
than that of local memory, our system can gua-
rantee 80% of the maximum performance. Main
memory database management system built on
Infiniband network and general PCs is a consi-
derable configuration. Values in the table greater
than 95% imply that mysgld or the Ethernet
network between the MySQL Server and Client is
the bottleneck in processing queries.

To measure the performance of OLTP, Bench-
markSQL is executed using same configuration as
the prior experiment. To analyze the impact of our
system on the performance of storage, we use the
following three types of storage engines:

« NDBCLUSTER enables clustering of in-memory

Memory Not Shared)

512Byte 1KB 2KB 4KB 8KB 16KB 32KB
Insert Query 91.581% 93.701% 85.500% 82.654% 85.280% 87.077% 81.580%
Select Query 97.511% 96.570% 96.821% 96.202% 97.371% 96.380%% 99.931%
Update Query 98.223% 99.319% 79.642% 92.812% 97.629% 96.812% 98.947%
Delete Query 98.826% 99.546% 90.492% 99.697% 96.451% 99.858% 87.892%
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databases
* MyISAM is the default storage engine in MySQL

for disk-based relational databases
« HEAP creates tables with contents that are

stored in memory

The difference between the NDBCLUSTER and
HEAP engines is the process that provides memory
for storage. NDBCLUSTER uses the memory of
ndbd, while HEAP uses that of mysqld.

Table 2 shows the average tpmC values mea-
sured after BenchmarkSQL
minutes. In the case of the NDBCLUSTER engine,
the ratio of the measured tpmC values is about

is executed for 20

905%, which is the result when the storage for
1.4GB database is split into 700MB of local memory
and 700MB of remote memory. This means that
when the percentage of the local memory is the
same as that of remote memory, there is only a
10% performance degradation from full usage of
sufficient local memory. This also shows that the
NDBCLUSTER built on our system outperforms
the MyISAM regardless of its base system. In the
case of the MyISAM storage engine, Memory Not
Shared outperforms Memory Shared because the
amount of memory for read or sort is configured
largely. The performance of HEAP storage engine
falls behind that of NDBCLUSTER because it is
used not for high-performance main memory
databases but for temporary tables.

Figure 7 shows the amount of memory that
pages in or out during the execution of Bench-
markSQL. An average of 10MB of data is paged in
and out, with a maximum value of 16MB. This
explains that when the main memory database
management system uses the same amount of local
and remote memory, the required network band-
width is 1% of the storage space during the

Table 2 Resuits of the TPC-C-like benchmark using

BenchmarkSQL
Measured Measured
Storage tpmC tpmC Ratio
Engine (Memory Not (Memory
Shared) Shared)
NDBCLUSTER 2369 2145 90.5%
MyISAM 1080 818 75.7%
HEAP 58 49 84.4%
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Figure 7 Trace of Memory Page In/Out During the
Execution of the BenchmarkSQL

execution of the TPC-C workload. We can estimate
the scalability of our system with this result, which
will be discussed in the next section.

5.2 Experiments using 64-bit machines

This section describes experiments that test sca-
lability using 64-bit machines. Since main memory
on 32-bit
machines lack address space, it is not appropriate

database management systems built
for large databases. Therefore, it is very important
to build main memory database on 64-bit machines
and 64-bit OSes.

5.2.1 Experimental Setup

Figure 8 shows the configuration of the Memory
Shared environment. The front-end node is equip-
ped with two 1.8GHz Dual Core AMD Opteron{tm)
Processor 265 CPU, 2GB RAM, and one 250GB
SATA disk. MySQL Cluster software is installed in
this node. The six back-end nodes have same
hardware specification as the back-end nodes in
Section 4.1.1. The only difference is that back-end
nodes export 2GB RAM to the front-end node in
this experiment. The front-end node runs a
modified Linux-2.6.13 to use the remote memory,
and the back-end nodes run a modified Linux-
2.430 to export local memory. In the Memory Not
Shared environment, the front-end node is equipped
with 8GB RAM and runs an unmodified Linux-
2.6.13.

5.2.2 Results

To measure the scalability of OLTP performance,
four experiments were conducted with varying
storage sizes. To increase the need for storage size,
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Figure 8 Experimental Setup for 64bit/32bit machines

our experiments set to large number of warehouses.
This is appropriate to test scalability because usage
of the remote memory is raised. The front-end
node has 2GB of local memory, and the database
takes up 1.8GB of the local memory. When the
number of warehouses are set to 50 and 75, the
amount of remote memory are 6.0GB and 9.0GB,
respectively. Unfortunately, since the front-end node
has only 8GB of physical memory in the Memory
Not Shared environment and this amount is less
than the amount needed in the case of 75 ware-
houses, we could not perform the test. Therefore,
we only compare the values measured in the
Memory Not Shared environment and 50 ware-
houses.

Table 3 show the performance ratio. Since less
remote memory used means better performance, the
measured tpmC is best when the number of

warehouses is smallest and the environment is

Memory Not Shared. In both Memory Shared
environments, OLTP performance is at least 87% of
that in the Memory Not Shared environment. This
ndbd of MySQL Cluster
software has a locality of data access pattern, and

result implies that

that our system exploits the locality. In other
words, frequently accessed data such as indices are
always in the local memory, while less frequently
accessed data such as records are fransmitted to
the remote node. We measured tpmC using the
MyISAM engine in the Memory Not Shared
environment, and the measured value is between
350 and 400. This means that the main memory
database built on our system outperforms
disk-based databases by a factor of 6 to 8.

Figure 9 shows the amount of memory that pages
in or out during the execution of BenchmarkSQL.
Clearly, more remote memory for data storage

means that more data are transmitted between

Table 3 Remote Memory Usage and Performance Ratio. (It is noted that all results of MyISAM and
performed under the Memory Not Shared environment

50

#
of warehouses (Memory Not Shared)

(Memory Shared)

50 50
(Memory Shared) (Memory Shared)

measured tpmC

(NDBCLUSTER) 3163 2940 2726 2610
measured tpmC
(MyISAM) 378 398
Amount of remote 6.4GB Q4GB 106GB
memory
Performance ratio 92% 87% 82%
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Figure 9 Trace of Memory Page In/Out with Varying the Number of Warehouses

client and server nodes. Therefore, it is natural that
an average of 14MB and 24MB of data are paged
in and out in the case of 50 and 75 warehouses,
Although 1.8GB storage
when the number of warehouses is increased from
50 to 75, network bandwidth of only 10MB is
required. This also implies that spatial and temporal

respectively. is needed

locality storage allow the required bandwidth to be
minimized.

Table 4 shows the results of the experiment
where the number of clients, not the number of
warehouses, were varied to show that our system
supports increases in various categories. The
results show that transaction processing becomes
saturated before the number of clients reaches 15.
This behavior is similar to that displayed in the
Memory Not Shared environment. A trace of the
memory page in/out while varying the number of

clients is displayed in Figure 1.

Table 4 Results of the TPC-C-like benchmark
(# of warehouses = 50, Memory Shared)

# of clients 5 10 15 20
measured tpmC 2940 3770 4095 3920

6. Future Work

Although the present article offers an initial
contribution to the architecture of operating system
concerning large memory database processing, more
research is needed to enhance the performance of
the in-memory database. What remains to be
determined by future research is how the existing
operating system should be redesigned to support
such a large memory database perfectly. Having

seen only a small part of the kernel in this article,

there is still much to delve into to design a
genuine architecture for the database operating
system.

Another issue to be considered is to utilize other
high performance commodity hardware to improve
or to encompass the limitation of exploiting only
the given resources. There are quite many cutting-
edge technologies to wuse in many industries.
Therefore, it should be viewed with a more open

mind to utilize them.

7. Conclusion

This work presents the architecture of the remote
memory system and indicates that the architectural
change of existing OS using high-performance
commodity hardware makes it possible to build
very large in-memory database systems. Even
though, tentative results of this article leaves more
to be researched and analyzed to commercialize
high—-performance in-memory databases, it is obvious
to see the potential of the proposed architecture.
The conclusion which can be drawn from the
results of this article are these: (1) general purpose
operating systems are not suitable to be used in
large memory database systems, (2) using high
performance commodity hardware, it is possible to
materialize large memory database systems in an
efficient manner, and (3) there is much enhance-
ments to be made in current operating system
architectures to improve the in-memory database

system.
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