참고문헌
- R.E. Banfield, L.O. Hall, K.W. Bowyer, and W.P. Kegelmeyer, 'A comparison of decision tree ensemble creation method,' IEEE Tr. Pattern Analysis and Machine Intelligence, vol.29, no.1, pp.173-180, January 2007 https://doi.org/10.1109/TPAMI.2007.250609
- G. Fumera and F. Roli, 'A theoretical and experimental analysis of linear combiners for multiple classifier systems,' IEEE Tr. Pattern Analysis and Machine Intelligence, vol.27, no.6, pp.942-956, 2005 https://doi.org/10.1109/TPAMI.2005.109
- G. Giacinto and F Roli, 'An approach to the automatic design of multiple classifier systems,' Pattern Recognition Letters, vol.22, pp.25-33, 2001 https://doi.org/10.1016/S0167-8655(00)00096-9
- P.M. Granitto, P.F. Verdes, and H.A. Ceccatto, 'Neural network ensembles: evaluation of aggregation algorithms,' Artificial Intelligence, vol.163, no.2, pp.139-162, 2005 https://doi.org/10.1016/j.artint.2004.09.006
- H. Hao, C.-L. Liu, and H. Sako, 'Comparison of genetic algorithm and sequential search methods for classifier subset selection,' Proceedings of ICDAR, 2003
- Tin Kam Ho, 'Multiple classifier combination: lessons and next steps,' in Hybrid Methods in Pattern Recognition, (Ed. by H. Bubke & A. Kandel), pp.171-198, World Scientific, 2002
- J. Kittler and F.M. Alkoot, 'Sum versus vote fusion in multiple classifier systems,' IEEE Tr. Pattern Analysis and Machine Intelligence, vol.25, pp.110-115, 2003 https://doi.org/10.1109/TPAMI.2003.1159950
- C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa, 'Handwritten digit recognition: benchmarking of state-of-the-art techniques,' Pattern Recognition, Vol.36, pp.2271-2285, 2004 https://doi.org/10.1016/S0031-3203(03)00085-2
- Il-Seok Oh and Ching Y. Suen, 'Distance features for neural network-based recognition of handwritten characters,' International Journal on Document Analysis and Recognition, vol.1, pp.73-88, 1998 https://doi.org/10.1007/s100320050008
- Il-Seok Oh, Jin-Seon Lee, and Byung-Ro Moon, 'Hybrid genetic algorithms for feature selection,' IEEE Tr. Pattern Analysis and Machine Intelligence, vol.26, no.11, pp.1424-1437, 2004 https://doi.org/10.1109/TPAMI.2004.105
- D. Partridge and W. B. Yates, 'Engineering multiversion neural-net systems,' Neural Computation, vol.8, pp.869-893, 1996 https://doi.org/10.1162/neco.1996.8.4.869
- N. Garcia-Pedrajas, C. Hervas-Martinez, and D. Ortiz-Boyer, 'Cooperative coevolution of artificial neural network ensembles for pattern classification,' IEEE Tr. Evolutionary Computation, Vol.9, No.3, pp.271-302, June 2005 https://doi.org/10.1109/TEVC.2005.844158
- J.J. Rodriguez, L.I. Kuncheva, and C.J. Alonso, 'Rotation forest: a new classifier ensemble method,' IEEE Tr. Pattern Analysis and Machine Intelligence, vol.28, no.10, pp.1619-1630, October 2006 https://doi.org/10.1109/TPAMI.2006.211
- http://svmlight.joachims.org, 2007
- A.J.C. Sharkey, N.E. Sharkey, U. Gerecke, and G.O. Chandroth, 'The test and select approach to ensemble combination,' in Multiple Classifier Systems (Ed. by J. Kittler and F. Roli), Springer, 2000
- S.Y. Sohn and H.W. Shin, 'Experimental study for the comparison of classifier combination methods,' Pattern Recognition, Vol.40, pp.33-40, 2007 https://doi.org/10.1016/j.patcog.2006.06.027
- S. Theodoridis and K. Koutroumbas, Pattern Recognition, 3rd ed., Academic Press, 2006
- N. Ueda, 'Optimal linear combination of neural networks for improving classification performance,' IEEE Tr. Pattern Analysis and Machine Intelligence, vol.22, no.2, pp.207-215, 2000 https://doi.org/10.1109/34.825759
- N.M. Wanas, R.A. Dara, M.S. Kamel, 'Adaptive fusion and co-operative training for classifier ensembles,' Pattern Recognition, Vol.39, pp.1781-1794, 2006 https://doi.org/10.1016/j.patcog.2006.02.003
- Zhi-Hua Zhou, Jianxin Wu, and Wei Tang, 'Ensembling neural networks: many could be better than all,' Artificial Intelligence, vol.137, pp.239-263, 2002 https://doi.org/10.1016/S0004-3702(02)00190-X
- 문병로, 유전알고리즘, 두양사, 2003
- 이진선, 김영원, 오일석, '대용량 분류에서 SVM과 신경망의 성능 비교,' 정보처리 학회 논문지, vol.12-B, no.1, pp.25-30, 2005 https://doi.org/10.3745/KIPSTB.2005.12B.1.025