부분 정보에 기반한 효과적인 음악 무드 분류 방법

Effective Mood Classification Method based on Music Segments

  • 발행 : 2007.03.30

초록

기술의 발전으로 인하여, 대용량의 음악 데이터들을 저장하고 검색하는 것이 중요하게 되었다. 그러나 음악데이터들을 손쉽게 분류하고 검색하기 위한 방법론에 대한 집중적인 연구는 이루어 지지 않고 있다. 본 논문에서는 내용기반의 음악 분류/검색에 대한 새로운 방법론을 제안한다. 기존의 분류화 (classification) 방법들이 음악파일 전체에 대해서 수행하는데 비해 음악파일의 부분만을 분석하여 비슷한 성능을 낼 수 있다는 것을 보여 주었고, 소리의 톤(tone) 표현에 기반한 새로운 피쳐를 제안하여 기존의 피쳐들에 비해 효과적으로 분류를 할 수 있다는 것을 보여주었다. 또한 속도향상을 위한 여러가지 방법론들을 적용하여 실 제품 적용 시 보다 효과적인 방법론이 될 수 있음을 보여주었다. 제안한 방법론을 MuSE (Music Search/Classification Engine)엔진으로 구현함으로써 PC와 PDA상에서 잘 동작함을 보여주었다.

According to the recent advances in multimedia computing, storage and searching technology have made large volume of music contents become prevalent. Also there has been increasing needs for the study on efficient categorization and searching technique for music contents management. In this paper, a new classifying method using the local information of music content and music tone feature is proposed. While the conventional classifying algorithms are based on entire information of music content, the algorithm proposed in this paper focuses on only the specific local information, which can drastically reduce the computing time without losing classifying accuracy. In order to improve the classifying accuracy, it uses a new classification feature based on music tone. The proposed method has been implemented as a part of MuSE (Music Search/Classification Engine) which was installed on various systems including commercial PDAs and PCs.

키워드