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Operations on the Similarity Measures of Fuzzy Sets
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Abstract

Measuring the similarity between fuzzy sets plays a vital role in several fields. However, none of all well-known similarity measure methods

is all-powerful, and all have the localization of its usage. This paper defines some operations on the similarity measures of fuzzy sets such as

summation and multiplication of two similarity measures. Also, these operations will be generalized to any number of similarity measures.

These operations will be very useful especially in the field of computer vision, and data retrieval because these fields need to combine and

find some relations between similarity measures.
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1. Introduction

Fuzzy techniques can be applied in many domains of
computer vision community. The definition of an adequate
similarity measure for measuring the similarity between fuzzy
sets is of great importance in the field of image processing,
image retrieval and pattern recognition, etc. Objective measures

or measures of comparison are required to test the performance

of applying algorithms to an image, to compare the output image.

Visual tasks are often based on the evaluation of similarities
between image-objects represented in an appropriate feature
space. The performance of content-based query systems depends
on the definition of a suitable similarity measure [1,2].

Since Zadeh's work [3], a lot of attentions have been paid for
the development of new similarity measures between fuzzy sets
and their applications [4-9]. There is no generic method for
selecting a suitable similarity measure or a distance measure.
However, a prior information and statistics of features can be
used in selection or to establish a new measure. Dietrich et al.
[10] gave an overview of similarity measures, originally
introduced to express the degree of comparison between fuzzy
sets, which can be applied to images. In [11] the authors
proposed similarity measures based on neighbourhoods, so that
the relevant structures of the images are observed better. In this
way 13 similarity measures were found to be appropriate for the
comparison of images.

Similarity measures of another type between intuitionistic
fuzzy sets (IFSs) were proposed by Wang et al. [12], some
distance measures and the corresponding proofs are given, and
the relations between similarity measure and distance measure
of TFSs are analyzed. Measuring the degree of similarity
between three fuzzy sets under unifying form and between IFSs
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is presented in [13]. The authors reviewed some existing
similarity measures, showed that these measures are not always
effective in some cases and illustrated the problem in the context
of colorectal cancer diagnosis by similarity measure between
fuzzy rough sets.

Unfortunately, all these similarity measures are not always
satisfactory results and have the localization of its usage. In the
mean time many applications such as information retrieval
systems [14] require many similarity measures to be applied
together in comparison of data objects, which in turn requires
some relations and operations among these similarity measures.
Until now there is not any paper covering this issue. To cope
with this drawback, the present work defines some of these
operations and relations among similarity measures. These
operation may be very useful in the fields which require a
combination of similarity measures such as content-based image
retrieval, data classification, and database searching [15].

The rest of this paper is organized as follows. In Section 2,
basic notions and definition of similarity measure are reviewed.
Sections 3 describes the suggested operations on the similarity
measures and investigates their proofs. Conclusions are given in
section 4.

2. Preliminaries

2.1 Fuzzy sets

The theory of fuzzy sets F(X) was proposed by Zadeh [3]. A
fuzzy set A in a universe X={xy,x,,...x,,} is characterized by a
mapping x4 : X —[0,1], which associates with every element
x in X a degree of membership ¥ ,(x) of x in the fuzzy set
A. In the {a,,a,,..a,} and
b={b;,b,,...b, } be the vector representation of the fuzzy sets A

following, let a=

and B respectively, where @; and bl. are membership values
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Xa(x;) and  yp(x;) with respect to X; and X;
(i, j = 0,1,2...n) respectively. Furthermore, suppose F(X) be the
class of all fuzzy sets of X, A° e F(X)is the complement of
Ae F(X).

In order to model the intersection or union between two fuzzy
sets the A and v operators will be used to refer to the
minimum and maximum respectively. The cardinality of a finite
crisp set is given by the number of elements in that set. This
concept can be extend to fuzzy sets: the sigma count of a fuzzy
set A (with finite support) in a universe X is defined as

| A= 2.(x)

xeX

2.2 Similarity measures
There is no unique definition for the similarity measure, but
the most common used definition is the following [5,12].

Definition 2.1 A similarity measure is a function assigning a
similarity value to the pair of fuzzy sets (A,B) that indicates the
degree to which A and B are equal or how similar they are. This
function must be reflexive, symmetric and min-transitive. On
other word, A mapping S:F(X)xF(X)—[0,1] is said to be
A eF(X) and
B eF(X),if §(4,B) satisfies the following properties:

a similarity measure between fuzzy sets

(SP1) S(4,B)=8(B,4), A,BeF(X);
(SP2) S(D,D°)=0,if Disacrispset;
(SP3) S(E,E):Agn%)((x)S(A,B),forall EFEeFX);

(SP4) If AcBcC forall 4,B,C eF(X)
then S(4,B)=S5(4,C) and S(B,C)=5(4,C).

Based on this definition several similarity measures have been
proposed [4,10]. But, with all this number of existed similarity
measures, there is not any relation between them. In other words,
there are not defined operations that control the behavior of
these measures when they are applied concurrently. The next
section suggests some of these operations and investigates their
proof with respect to the above definition.

3. Operations on the similarity measures

Using the definition of similarity measure given in the
two
multiplication of two similarity measures will be defined.

previous  section, operations, the summation and
Further these operations will be defined for any number of the
similarity measures. According to the definition 2.1, the
resulting of these operations is also a similarity measure in all

cases and we will prove that.
Theorem 3.1 Let S, and S, be two similarity measures

between two fuzzy sets A,B € F(X). The summation of S|
and S, can be defined as follows
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_5i(4.8) + 55(4,8)

Which is also a similarity measure. It is easy to see that all
properties from SP1 to SP4 are satisfied.

Theorem 3.2 Let S, and S, be two similarity measures
between two fuzzy sets A,B € F(X). The multiplication of
S7 and §, canbe defined as follows

Sl ® S2: max {SI(A7B)’S2(AaB)}

Which is also a similarity measure. It is easy to see that all
properties from SP1 to SP4 are satisfied.

Theorem 3.3 Let S; be a set of similarity measures between
two fuzzy sets AB € F(X) and (i=123,.,n ). The
summation operation on these similarity measures S; can be
defined as follows

i=1

&S, =—(35,(4,8)
[

Which is also a similarity measure.
Proof.

SP1 Since, S;(4,B) are similarity measures for each i,
S;(4, B) =S;(B, A) for each i, therefore,

ie.,

n n
LY siamy)= i(z S;(B, A)), for each i.
: i=1 o
SP2 @ S;(D,D)=0,if Disacrispset;
lﬁ\e proof is obvious.

n it
SP3 eaSi(E,E)zl(ZS,(E,E)):i.n:l
i=1 no n
SP4 If AcBcC for all A4,B,Ce F(X) then
S;(4,B) 2 5;(4,C) and S;(B,C)2 S;(4,C) foreachi.

n n
® S;(4,B) = @ S;(4,C) and similarly
i=1 i=1

Iz i
@lSi(B,C)Z @ S5;(4,C).
i= i=1
ie. If AcBcC forall 4,B,Ce F(X) then,

n n
® 5,(4,B)> @ S,(4,C),and
i=1 i=l1

n n
® S;(B,C)2 @ S,;(4,C).
i=1 i=1
Moreover, 0<S;(4,B)<1, for each i, and hence,

n
0< z S,;(4,B)< n,
i=1

By dividing the inequality by » one can get
n
0<®S,(4,B)<1.
i=1

Theorem 3.4 Let S; be a set of similarity measures between
two fuzzy sets AB € F(X) and ( i=123,...,n ). The
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multiplication operation on these similarity measures §; can
be defined as follows

®5, = max {5, (4, 8),5,(4, B),....5, (4. B)}

Based on definition 2.1, the multiplication operation is also a
similarity measure. Using the same way, one can easily
investigate the properties SP1-SP4.

Theorem 3.5 Let {4;} and {B;} be two collections of finite

n
A=u and

i=1

fuzzy sets with (i=123,.,n ) such that

n
B =UB,;.Then S(4,B) = S(UA,,UB)—VS(A,,B)
i=1 i=1 i=1
is a similarity measure.
Proof.

SP1  S(4,B)=v S(4:,B;) = v S(B., 4.) = S(B, )
i=1 i=1

SP2  Since, S(4;,B;) is a similarity measure for each i,

ie. S(A4;,4;°)=0,foreachi,if 4; is crisp set.

n
)= vS(4,1-4)
i=1

So, S(4,4°)=S(4,1-4

n n
=v S(4,4%) =v0=0.
i=1 i=1
n n
Moreover, S(4,4)= v S{4;,4;)=v1=1.
i=1 i=1
SP3 It is clear that 0<S(4,B)= vS(A,, B;)<1, since

i=1
0<S5(4;,B;)<1.
SP4 If Ac Bc Cforall 4,B,CeF(X),so0
A; € B; c C; foreach i, then
S(4; ,B;)28(4;,C;)and S(B;,C;)=S5(4;,C)).

n n
Therefore, v S(4;,B;)= v 8(4;,C;)and
i=l i=l

n n
VS(BI',CI')Z \/S(A,-,C,-).
i=1 i=l

Theorem 3.6. Let {4;} and {B;} be two collections of finite

n
fuzzy sets with (i=123,.,n ) such that 4=n4; and

i=1

B=nB;. Then S(4,B)= S(mA,,mB)—/\S(AI,B)
i=1 i=1

i=1

is a similarity measure.

Proof

The proof of this case is straightforward as in the proof of
theorem 3.5, except using the meet A instead of the joint v .

Theorem 3.7 Let {4;} and {B;} be two collections of finite

n
fuzzy sets with (i=123,.,n) such that 4= 4 and

i=l

n
B=nB;, and S(4; B;) is similarity measure for each i, j.
i=1 ’

n n n n
Then, S(4,B)=S(U4,NB)=v A S(4,B))
i=l =l i=1 j=l1

is a similarity measure.

Proof.

Investigating the properties of this case can be done using the
theorem 3.5 and 3.6, and applying the proof for each i, and j
respectively as follows.

SP1 Using theorem 3.5, we have

S(4, B)—v1 A S(Al, B;)= /\ vS(A,, B;)
n n

= _/\le(B,, 4;)=S(B,4).
j=li=l

SP2 S(4;,1-4;)=0,

n
So, v§(4;.1
i=1

—A4;) =0, from the theorem 3.5,

n n
Then A v 8(4;,4°)=5(4,4°)=0.
i=1

j=li=

SP3 S(4,4A)=v /\ §(4;,4;)=1, from the theorem 3.6,
i=

1 j=1

n
we have, A S(A,-,Aj):l,So S(4,4)=v 1=1.
j=1 i=1

SP4 If AcBcC forall4,B,Ce F(X),so
A; € B; < C; foreach i,
Then, from the theorem 3.5, one can conclude that
n n n n
v S(4;,B;))> vS(4;,C;)and v S(B;,C;)= v S(4;,C)).
i=1 i1 i=1 i=1
Similarly, from theorem 3.6, one can conclude that
n n n n
AS(4;,B;)2 ~AS(4;,C;)and A S(B;,C;)= AS(4;,C;)
i=l i=1 i=l i=1
Combining both conclusions leads to the following

v /\S(A

)2 v A S(4;,C;), and
i=1 j=1 i=l j=1

12> j

v A S(B,,C )> v voA S(A ,C}).
i=l j=l1 =l j

ie. If AcBcC forall 4,B,Ce F(X),then

\/ /\ S(Ai,Bj)Z VoA S(A,-,Cj),and
i=l j=1 i=t j=1

n n
v /\ S(B;,C;)z v A S8(4;,C;)foreachi,and;.
i=1 j=1 i=1 j=1

4. Conclusion

Fuzzy techniques can be applied in several domains of
computer community. Measuring the similarity between fuzzy
sets is of great importance in the field of image processing,
content-based image retrieval, data classification, and database
searching. The drawbacks of the current similarity measures are
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that, none of all well-known similarity measure methods is all-
powerful, and all have the localization of its usage. Also, several
applications require that a group of similarity measures to be
applied together while there is not any relation between them.
To cope with this drawbacks, the present paper introduced some
operations among similarity measures of fuzzy sets. The
proposed operations will help in combining the results of many
similarity measures together improving distinguish precision
and enhancing the capability of classification of some similar
sets.
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