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Abstract

In mobile robotics, ultrasonic sensors became standard devices for collision avoiding. Moreover, their applicability for map building and
navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile
robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use
of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot
designed to operate autonomously within both indoor and outdoor environments.

The global map building based on multi-sensor data fusion is applied for recognition an obstacle free path from a starting position to a
known goal region, and simultaneously build a map of straight line segment geometric primitives based on the application of the Hough
transform from the actual and noisy sonar data. We will give an explanation for the robot system architecture designed and implemented in
this study and a short review of existing techniques, Hough transform, since there exist several recent thorough books and review paper on

this paper.

Experimental results with a real Pioneer DX2 mobile robot will demonstrate the effectiveness of the discussed methods.

Key words : Intelligent space, multiple vision, tracking, mobile robot, covariance intersection

1. Introduction

Sensing of the environment and subsequent control is
important feature of the navigation of an autonomous mobile
robot. When a mobile robot navigates in an unknown or partially
known environment, several types of sensors are commonly
used for this purpose such as ultrasonic sensors, infrared sensors,
laser range finders and vision systems for obstacle avoidance or
path planning. Recently, it is increasing the use of vision system
because it has inexpensive and is able to be fast real-time
environmental recognition [1],[2]. In this paper we present a
statistical method for dealing with the general problem of
concurrent localization and map building. We furthermore
address the problem of using occupancy grid maps for path
planning in highly dynamic environments. The approaches have
been tested extensively and several experimental results are
given in the paper.

Probabilistic methods have been shown to be well suited for
dealing with the uncertainties involved in this problem. The
method is based on a variant of the EM algorithm, which is an
likelihood
estimation in high-dimensional spaces. In the context of

efficient hill-climbing method for maximum
mapping, EM iterates two alternating steps: a localization step,
in which the robot is localized using a previously computed map,
and a mapping step, which computes the most likely map based
on the previous pose estimates. The resulting approach can be

applied to different kinds of sensors and is general enough for
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topological and metric map building [3],[4]. A very popular
approach to metric maps is occupancy grid maps, which were
originally proposed in [5]{6] and which since have been
employed successfully in numerous mobile robot systems.

A mobile robot has many application fields because of its
high workability. Especially, it is definitely necessary for the
tasks that are difficult and dangerous for men to perform. There
are many people who are interested in the mobile robot.
However, most of them are aiming at successful navigation, that
is, focusing on recognizing a location and reaching at a fixed
destination safely.

This paper also implements sonar sensor-based on-line map
building that is based on the application of the Hough Transform
[7]. This approach builds a map of straight line geometric
primitives which is then combined with the sensor fusion
approach using local map data, resulting in an improved new
method, allowing the system to make a more efficient use of
collected sensory information for simultaneous and cooperative
construction of a world model and learning to navigate to the
goal.

2. Related Theories

2.1 Map Building and Object Classification

For many years, a lot of work has been invested in generating
maps for mobile robots by ultrasonic sensors with or without
classification of environment objects (Fig. 1).
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Fig. 1. Reflection behavior of a) planes, b) corners, and c) edges
(according to[8]).

The main goal is still to find collision free paths for a given
destination in an unknown environment. Generally, successful
path planning strategies require sufficiently accurate information
about the mobile robot’s position. This is usually not satisfied by
pure odometric measurement because of the accumulation of
errors in the progress of robot’s motion [9]. Therefore, pose
tracking Additional
information about the surroundings of the robot from sensor
devices or offline prepared maps is needed. In the case of
sensory generated maps, it is a question of precision and
reduction of ambiguities to include information about echo

requires  frequently  recalibration.

causes and object shapes, respectively. In recent years, mainly
two ways became apparent for map building and object
classification purposes:

1) based on sensor arrays, capable of gathering information
without sensor movement [10],[11] ;

2) based on a few sensors utilizing typical scanning
movements (e.g., rotary scans) [1], [4].

Because of unknown echo direction inside the sound lobe, the
sensor axis is often used as representation of the echo direction
for each measurement. Rotary scans on different positions using
this simple geometric interpretation leads to the typical regions
of constant depth (RCDs) which can be used to build a map [2].
The different reflection behavior of different object types (Fig.
1) influences the length of RCDs. In combination with
amplitude information, this can be used to distinguish planes,
edges, and corners [3], [4].

The basic difference between convex and concave objects is
the echo amplitude. To eliminate the distance dependency of the
received signal, the damping losses in air and the amplitude
reduction by the divergent soundwave are often compensated by
time dependent receciver amplifiers. Typically, this
compensation presupposes planes, and corners as reflectors.

While they return the whole emitted sound energy (except from

small damping losses on the objects surface), edges and convex
vertices only return a small part of the energy because the
reflected sound wave is dispersed by the object [Fig. 1(c) and
[11]]. This effect increases with decreasing radius of curvature.
Thus, concave and convex objects can be distinguished by their
amplitude maximum and the length of RCDs from rotary scans
while corners and planes can be distinguished by RCDs at
different viewpoints.

2.2 Feature Extraction with Hough Transform

With the sonar model presented as Fig. 2, associating sonar
returns to line segment geometric primitives may be stated as
finding groups of sonar arcs all tangent to the same line.

Given the large amount of spurious data coming from moving
people, specular reflections and sonar artifacts, the Hough
Transform [7] seem very appropriate for the following reasons:
1) The location of line features can be easily described with two
parameters, giving a 2D Hough space in which the voting
process and the search for maxima can be done quite efficiently;
2) The sonar model presented can be used to restrict the votes
generated by each sonar return to be located along the
corresponding transformed sonar arc; 3) Since each sonar return
emits a constant number of votes, the whole Hough process is
linear with the number of returns processed; and 4) Being a
voting scheme, it is intrinsically very robust against the presence
of many spurious sonar returns.

Ys(j)
Yi

Xie Xs())

Fig. 2. Modeling of Sonar Ring.

If the location of the robot S) =(x;,y,,0,) at time k
is known, which can be obtained through the accumulation of
encoder information. For more accuracy of the algorithm, we
should consider the mounted position of each sonar sensor.

The value of each sonar sensor offsets robot heading is
22.5-7 (j=0,...,15), j is the sequence number of sonar,
and Pioneer-DX mobile robot has 16 sonar sensors in all), which
is invariable. Consequently, the j—th sonar sensor position
(*5(5)> Ys(jy» Os( ) in the state space is given in (1)~(4):
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Oy =6 —225-j (j=0,....,7) N
Oy =360-225-j+6, (j=8,...,15) 2)
Xojy =% T L-cosb 3)
Ysjy = Y +LosinGy )

Where L s the eccentric distance of sonar sensor, the value
of (0;,6,) can be given in (6), which is the position of the
extracted line segment represented in a base reference for:

6, =6, +0; (5)

Pr = Py + X €080, ) + vy, sin(B;Y)  (6)

One of the key issues of its practical implementation is
choosing the parameters defining the Hough space and their
quantization. In our implementation, we perform some prior
filtering for removing noisy data. Two filtering operations on
sonar data points are used. First the sonar returns obtained along
short trajectories (around 2m), which above a certain limit,
distance readings were not very reliable, and thus were rejected.
A second filtering operation, Let ® be a set of sonar data
points. A point (p,,8,) is rejected, if no other data point of
® is found inside a circle of radius r and center at
(Pr>0k) -

Excellent results have been obtained with data sets ® , which
coming from a number of consecutive sonar-ring scans. In order
to keep the odometry errors small, lines are represented in a base
reference, using parameters 6, and p, defining the line
orientation and its distance to the origin (Fig. 2).

3. Sonar Data Fusion by Statistical Foundations

Data fusion is about deriving information about certain
variables from observations of othet variables. The application
area is huge, sce the special issue on data fusion in [12] for a
recent overview. An edited collection of survey papers on data
fusion in robotics and machine intelligent is given in [13].
Sensor fusion in general is discussed in [14].

From a statistical perspective, we have the following problem.
Given two vector random variables X' and Y, what does the
observation Y =y tell us about X ? The complete answer is
given by the so-called conditional probability density function,

Py (x.¥)

)
Py (¥)

Pxy(x [y)=

Here py y(x,y) is the joint probability density for X

and Y, and p,(y) is the probability density for V. By

using the dual assumption, namely that X =x is given, we
obtained the very useful Bayes rule
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Pxy(6Y)=pyy (x| »)py (1) = pyx (Y1 ) (x) (8)

Prix (| x)py(x)

Pyy(x,y)=
Py (y) (9)

which is the key formula in Bayesian and maximum likelihood
estimation theory.

Different estimates of X can now be constructed from its
distribution. The (conditional) minimal variance of X equals
the conditional mean of X given Y =y,

= EX Y =yl= [ Gl 0)

Another useful estimate is the maximum a posteriori estimate,
which maximizes the function pyy(x|y). The rest is design
and analysis issues, i.e. formulating the underlying model,
specifying probability density functions and calculating
equality/variance properties. The most used probability density
function is the Gaussian one (the Normal distribution). The main
reason is that the conditional density function also will be
Gaussian, and analytic expressions of the minimal variance
estimate can thus be obtained.

Let X and Y be jointly Gaussian, ie. Z=[X'Y'] is
Gaussian with mean and covariance

X Yo 2
L=, ZZZ _ XX Xy
" [J’} {Zyx Zw}

Then X conditional on ¥ =y has a Gaussian distribution

an

with mean and covariance
— -1 —
mx|y =X +ny Zyy(y_y) B

PITIED I 0 35 3 (12)

Hence the conditional mean of X given Y = y, equals

A - -1 _
x=E[X[Y=y]=%+2,2,(r-¥) (13)

Almost all practical estimators are special cases of the above
result. The expression is called the fundamental equations of
linear estimation in [15]. This reference also provides a very
good introduction to estimation theory, in general, and tracking,

in particular.

4. Robot and Experiment Environment

This proposed navigation method is applied for a mobile
robot named as Pioneer-DX that has been developed in
Laboratory for Intelligent Robot, DSU as shown in Fig. 3. We
use a DC motor for each wheel, and use a ball-caster for an
assistant wheel. Two encoders, a gyro-sensor (ENV-05D), an
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ultrasonic sensor and a vision sensor are used for the navigation
control. The gyro sensor is used for recognizing the orientation
of robot by measuring the rotational velocity; the ultrasonic
sensor (Polaroid 6500) is used for recognizing environment,
which is rotated by a step motor within 180 degrees; the CCD
camera (Samsung SFA-410ED) is used for detecting obstacles.
A Pentium 4, 2.45Ghz processor is used as a main controller and
an 80C196KC microprocessor is used as a joint controller.

® _ <& CCD Camera

Laser finder

Ultrasonic
Sensor

Gyro Sensor
ometry Sensor

Fig. 3. Mobile Robot, Pioneer-DX
4.1. Building a local map

Building a robust and reliable avoid behavior has been found
to require some kind of memory. Inspired by the work of
Borenstein and Koren [5] we have implemented a grid based
local map for the robot. So far this map has been updated using
only the sonar data. At this early stage we have been using a
ray-trace model for the sonar, which is justified by the motto, try
simple first and supported by [10]. The results of these tests
show that the avoid behavior is improved. Below (Fig. 4) is a
sketch of the experimental environment. To show what the local
maps look like, four samples of such maps are shown in Fig.s 5-
7. The size of the cells in these maps were 20X20 mm and the
number of cells were 200X200, giving a total size of 4X4m.
Note that the coordinate system of the local maps are robot
centered. The approximate location of the robot when the maps
were saved is given in the sketch (Fig. 4) by the letters A-D.

Fig. 4. Sketch of the Environment Around the Robot Lab.
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Fig. 5. Sonar based Local Map of the Corridor outside Room
with Three Closed Wall and One Open. A in the Sketch.
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Fig. 6. Sonar Based Local Map of the Corridor beside Room. B
in the Sketch.
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Fig. 7. Sonar based Local Map of the Door-passage into Room.
C in the Sketch.
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1f the local map is extended to a size that can hold much more
information the figure below (Fig. 8) show a possible result. It
can be clearly seen that most of the features of the environment
(corners, wall, etc) are accurately mapped. The intention of the
local map is not to be this large, but rather to have a size more
like the once shown above. The global map is updated based on
the local map, i.e., the sensor data is not directly used in the
global map.

4.2 Global Map Generation

The classified local structure can be regarded as a state and a
state transition is caused by a turning action. The final step is to
construct a global map representation by a graph of which nodes
and arcs correspond to states and state-transition probabilities in
terms of turning actions. Once we have such a graph
representation, we can easily apply the conventional path
planning or reinforcement learning methods on it. From the
above argument, the unit of turning angle should be 30 degrees
which corresponds to the angle between two sonar sensors next
to each other. Actually, we construct the action space consists of
+30% +60°% +90° turns, and totally we have 7 actions
including no turns.

The state transition probability is obtained by the Maximum
Likelihood Estimation (MLE) method. Let Pr(s;,a,,s;)be
the state transition probability that the world will transit to the

next state §;

; from the current state-action pair (s;,a,,) :

_ times(s;,a;,s;
N .
z t=1 [lmeS(Si,ak,S,)

Pr(s;sa,s; , (14

where, times(s;,a;,s J-) denotes the number of observations

of the state § |

§;. N denotes the number of all states. After memorizing the

after execution of the action g, at the state

history of these transitions times(s;,a,,s j) to some extent
during the learning process, we estimate the state transition
probabilities.
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Fig. 8. Sonar Based Map of the Experimental Environment.
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4.3 Autonomous Navigation used map-building

We executed the experiments that a mobile robot navigate to
the goal point having the initial condition in figure 10 using
MARCH mobile robot . We fixed initial point and goal point of
the mobile robot to initial point (x:500cm, y:80cm, 120°) and
goal point (x:100cm, y=600), and initial point (x:600cm,
y:100cm, 150°) and goal point (x:100cm, y=600). The results is
showed in figure 3(b) and 3(c). Probability method that we
proposed navigation algorithm is used for map building and
navigation. The fusion formula just means that estimates should
be weighted together, with weights inversely proportional to
their qualities/variances. It is easy to modify the fusion filter to
handle correlated estimators. We have concentrated on quadratic
norms, which follows from a Gaussian assumption. However,
the sensor noise may have very different characteristics,
including existence of so-called outliers.

X
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(b) Map Building and Navigation [A ]: Initial Point
(500,80,120°), Target Point (100,600)

P

'

(c) Map building and navigation [B]: Initial point
(600,100,150°), Target point (100,600)

Fig. 9. Experimental Results of Map Building and Navigation.

Figure 10(b) showed that the map-building and navigation is
completed successfully. In case of figure 10(c), mobile robot
navigated using map information and finished safely, but map-
building wasn’t correct slightly. It results from the error of
recogniton. Because image information from CCD camera based
on 2D coordinate system isn’t sufficient to compute compont in
Z plane although obstacles is seperated each in real environment.
However, through many experiments, information obtained
from the proposed method was suffiicient to build a map and
navigate a complete and reliable representation.

5. Conclusion

In this paper, we have presented two more or less orthogonal
approaches for using sonar sensor and map-building by muliti-
sensor mobile robot to navigate within an indoor setting.
Important regions of the robot workspace (locales) are
represented using grid-based map collected during the
exploration phase. From a scientific/academic perspective it is
important to study very general issues and approaches, were the
ultimate aim is full autonomy. However, the engineering
perspective is the opposite, i.e. one wants to solve a specific
problem, e.g. a sonar sensor based feedback control algorithm
for going through narrow doorways. However, the main issue
for such research is scalability, i.e. is the solution of more
general interest and can it be extended to more complex
situations.

For future works, it is straightforward to control robot locate a
certain target with multi-sensor upon navigation. Also it will be
interesting to have the robot to learn and map an unknown or
pseudo-unknown environment.

References

[11 D. Pagac, E. M. Nebot, and H. Durrant-Whyte, “An
Evidential Approach to Map-Building for Autonomous
Vehicles,” IEEE Trans. On Robotics and Automation, 14,
pp. 623-629, August 1998.

[2] A. Elfes, “Sonar-based real-world mapping and navigation,”
IEEE J Robot. Automation, vol. RA3, pp. 249-265, June
1987.

[3]1 Y.S.Ro, “a Geometrical Sonar Maps for Mobile Robots,”
Korean-Russian  Int.  Symposium on Science and
Technology (KORUS), pp. 209-212, 2001.

[4] L. Kleeman, “On-the-fly Classifying Sonar with Accurate
Range and Bearing Estimation,” in: Proc. [EEE Int. Conf.
Intelligent Robots and Systems (IROS), pp. 178-183, Oct,
2002.

[5] Borenstein, J. and Koren, Y., “Histogramic In-Motion

203



International Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 3, September 2007

Mapping for Mobile Robot Obstacle Avoidance,” TEEE .
of Robotics and automation, vol.7, pp. 535-539, 1991.

[6] H. R. Beom, H. S. Cho, “Sonar-Based Navigation
Experiments on a Mobile Robot in Indoor Environments,”
in: Proc. of the [5th IEEE Int. Symposium on Intelligent
Control (ISIC 2000), pp. 395-401, 2000.

[71 A. Grossmann, R. Poli, "Robust mobile robot localization
from sparse and noisy proximity readings using Hough
transform and probability grids," Robotics and Autonomous
Systems., pp. 37:1-18, 2001. }

[8] A. Elfes, “Sonar-based real-world mapping and navigation,”
IEEE J. Robot. Automation., vol. RA-3, no. 3, pp. 249-265,
Jun. 1987.

[9] L. J. Crowley, “World modeling and position estimation
for a mobile robot using ultrasonic ranging,” in Proc. IEFE
Int. Conf. Robotics and Automation, vol. 2, May 1989, pp.
67468

[10] L. Kleeman and R. Kuc, “An optimal sonar array for target
localization and classification,” in Proc. IEEE Int. Conf.
Robotics and Automation, vol. 4, May 1994, pp. 3130-3135.

[11]J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous map
building and localization for an autonomous mobile robot,”
in Proc. IEEE/RSJ Int. Workshop on Intell. Robots and
Systems, Nov. 1991, pp. 1442-1447.

[12] B.Wirnitzer,W. Grimm, H. Schmidt, and R. Klinnert,
“Interference cancelling in ultrasonic sensor arrays by
stochastic coding and adaptive filtering,” in IEEE Int. Conf.
Intell. Veh., Stuttgart, Germany, 1998.

[13] T. Duckett, S. Marsiand, and J. Shapiro, "Learning globally
consistent maps by relaxation,” In Proc. of the IEEE
International Conference on Robotics and Automation, vol,
4, pp. 3841-3846, 2000.

[14] B. Ayrulu, B. Barshan, “Comparative Analysis of Different
Approaches to Target Classification and Localization with
Sonar,” in: Proc. IEEE Int. Conf. Multisensor Fusion and
Integration for Intelligent Systems (MFT), pp. 25-30, August,
2001.

[15] O.Wijk and H. 1. Christensen, “Triangulation-based fusion
of sonar data with application in robot pose tracking,” IEEE
Trans. Robot. Autom., vol. 16, no. 6, pp. 740-752, Dec.
2000.

204

Shin-Chul Kang
He received Ph. D. degree in Department of
from the Dong-A
University, Busan, Korea, in 1995. From
1978 to 1996, he was a Korea Telecom
(KT).

From 1996 to 1997, he was a Chang Won
Politechnic College. Since 1997, he has been a faculty member

Electronic Engineer

of the Computer Application Electrical at the Namhae College
Provincial of GyeongNam, where he is curently a associate
Professor. His research interests are Computer Control, Fuzzy &
Artificial Intelligence etc. He is a member of KIMISC, KMS,
KIEE, and KFIS.

Phone : +82-55-860-5352
Fax  : +82-51-860-5351
kangs@namhae.ac.kr

E-mail :

Tae-Seok Jin

He received the Ph.D. degrees from Pusan
National University, Busan, Korea, in 2003, in
electronics engineering.

He is currently a full-time lecturer at DongSeo
University. From 2004 to 2005, he was a
Postdoctoral Researcher at the Institute of
Industrial Science, The University of Tokyo,
Japan. His research interests include network sensors fusion, mobile
robots, computer vision, and intelligent control. Dr. Jin is a Member of
the KFIS, IEEK, ICASE, and JSME.

Phone +82-51-320-1541
Fax o +82-51-320-1751
E-mail : jints@dongseo.ac.kr



