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Abstract

We characterize a fuzzy pairwise y-irresolute continuous mapping on a fuzzy bitopological space.
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1. Introduction

Azad [1], Singal and Prakash {9] introduced the con-
cepts of a fuzzy semiopen set and a fuzzy preopen set on
a fuzzy topological space respectively, and characterized a
fuzzy semicontinuous mapping and a fuzzy precontinuous
mapping on a fuzzy topological space. Weaker forms of a
fuzzy pairwise continuity on a fuzzy bitopological space as
a natural generalization of a fuzzy topological spaces have
been considered by several mathematicians using a (7, 7;)-
fuzzy semiopen set and a (7;, 7;)-fuzzy preopen set. In
particular, Sampath Kumar (7, 8] defined a (7;, ;) ~fuzzy
semiopen set and a (7;, 7;)—fuzzy preopen set, and char-
acterized a fuzzy pairwise semicontinuous mapping and a
fuzzy pairwise precontinuous mapping on a fuzzy bitopo-
logical space.

Recently, Hanafy [2] defined a fuzzy ~y-open set, and
studied a fuzzy y-continuous mapping on a fuzzy topo-
logical space. The author et al. [3, 5] defined a fuzzy
~-irresolute (fuzzy y-irresolute open) mapping on a fuzzy
topological space and investigated some of their properties.
Also, he et al. [4, 6] defined a fuzzy pairwise ~y-continuous
mapping and a fuzzy pairwise pre-irresolute mapping on a
fuzzy bitopological space and characterized.

In this paper, we characterize a fuzzy pairwise -
irresolute continuous mapping on a fuzzy bitopological
space.

2. Preliminaries

A system (X, 71, 7o) consisting of a set X with two
fuzzy topologies 71 and 7o on X is called a fuzzy bitopo-
logical space [ fbts]. Throughout this paper, the indices ¢, 7
take values in {1, 2} with i # j.
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Let 4 be a fuzzy setina fbts (X, 71, 72). Then 7; — fo
set 4 and 7; — fc set u mean 7;-fuzzy open set u and
7;-fuzzy closed set u respectively. Also, 7; — Inty and
7; — Cl ¢ mean the interior and closure of y for the fuzzy
topologies 7; and 7; respectively.

A mapping f : (X, 71, 7) — (Y, 77, 75) is fuzzy pair-
wise continuous [ fpc] if and only if the induced mapping
[ (X, 1) — (Y, 77) is fuzzy continuous for (k = 1,2) .

Definition 2.1. [7, 8] Let i be a fuzzy set of a fbis X.
Then p is called;
(1) (7, 7;)—fuzzy semiopen [(7;, 7;) — fso] in X
if p <7, — Cl(r; — Intp),
(2) (73, 7;)—fuzzy semiclosed [(73,7;) — fsc] in X
if 7; — Int(r; — Clp) < p,
(3) (74, 7;) —fuzzy preopen [(7;, ;) — fpol in X
if p <7, — Int(r; — Clp),
(4) (73, 7;)—fuzzy preclosed [(7;, 7;) — fpc] in X
ifr; — Cl(r; — Intp) < p.

Definition 2.2. [6] Let i be a fuzzy set of a fbts X. Then
u is called;
(1) a (r, 7j)—fuzzy y—open [(7;, Tj) — fyo] set of X
ifu <t — Cl{r; — Intp) V7 — Int(r; — Clp),
(2) a (73, 7j)—fuzzy y—closed [(7;, 7;) — frc] setof X
if , — Cl(r; — Intp) A7 — Int(r; — Clp) < p.

Remark that every (r;,7;) — fso setisa (1;,7;) — fyo
set and every (7;,7;) — fpo setis a (7;,7;) — fryo set. The
converses need not be true in general [6].



Proposition 2.3. [6] (1) The union of (75, 7;) — fyo sets is
a (73, 15) — fryo set.

(2) The intersection of (73, 7;) — fryc setsis a (7, 7;) —
frye set.

The intersection (union) of any two (r;,7;) — fyo
((73,75) — fryc) sets need not be a (5, 75) — fyo (13, 75) —
fye) set [6].

Proposition 2.4, [6] Let i be a fuzzy set of a fbts X.

(M If pisa (74, 7;) — fyoand 7; — fe set, then pis a
(13, 75) — fso set.

Q) If pisa (75, 7;) — fycand 7; — fo set, then pis a
(13, 75) — fscset.

Proposition 2.5. [6] Let (X, 71, 72) and (Y,n1,72) be
fbts’s such that X is product related to Y. Then the prod-
uct uxvofa(r,;)— fyoset pof X and a (11, m2) — fyo
set v of YV is a (04,0;) — fvo set in the fuzzy product
bitopological space (X x Y, 01, 02), where oy, is the fuzzy
product topology generated by 74, and ny, (k = 1, 2).

Definition 2.6. [6] Let u be a fuzzy setof a fots X.
(1) The (7;, 7j) — y—interior of p [(74, 7;) — 7 Int p] is
defined by

(15, 75)—y Intp, = sup{v |v < p, visa (13, 7;)—fyoset}.

(2) The (7;, ;) — y—closure of p [(7;, 7;) — v Clp)] is
defined by

(i, 7)) =y Clp =inf{v v > u, visa(r, 7;)— fycset}.

Obviously, (7;,7;) — <y Cly is the smallest (7;,7;) —
frye set which contains p, and (7;,7;) — «y Inty is the
largest (7;,7;) — fryo set which is contained in p. Also,
(ri,7j) —vClp = p for any (75, 7;) — fyc set p and
(1, 75) — v Intp = p forany (73, 7;) — fryo set .

Hence we have

7, — Intp < (75, 75) — sIntp < (7, 75) — v Intp < pa,

p< (i, 15) — v Clu < (14, 75) — sClu < 73 — Clp

and
7 — Intp < (14, 75) — plntp < (75, 75) — v Intp < p,

p < (7,75) —vClp < (14, 75) — pClp <7, — Clp.
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Definition 2.7. [6, 7, 8] Let f : (X, 71,72) — (Y, 7], 73)
be a mapping. Then f is called;

(1) a fuzzy pairwise semicontinuous [ fpsc] mapping if
f~Y(v)isa(ri,7;) — fsosetof X foreach 7} — fosetv
of Y,

(2) a fuzzy pairwise precontinuous [ fppc] mapping if
J7Y(v)isa (7, ;) — fpo set of X for each 7 — fo set v
of Y,

(3) a fuzzy pairwise y—continuous [ fpyc] mapping if
[t(v)isa(m,7;) — fyo setof X foreach 7} — fosetv
of Y.

From the above definitions it is clear that every fpsc is

a fpyc mapping and every fppc is a fpyc mapping. But
the converses are not true in general [6].

Theorem 2.8. [6] Let f : (X, 71,72) — (Y,77,75) be a
mapping. Then the followings are equivalent:

(1) fis fpye

(2) The inverse image of each 7 — fcset of Y is a
(13, 7;) — fyosetof X.

(3) f((r, 15) = Cly) < 77— CI(f()) for each fuzzy
set u of X.

) (15, 75) =y Cl(f ' (v)) < f~' (7} — Clv) for each
fuzzy set v of Y.

(5) f~H(rF — Inw) < {7y, 7;)—v Int(f~*(v)) for each
fuzzy set v of Y.

Proposition 2.9. [6] Let [ : (X, 71,72) — (Y, 7{,75) be
a fpyc mapping. Then for each fuzzy set v of Y,

U — Inw) <

T — Cl(TZ — Int(f_l(l/))) VT — Int(Tj - C](f_l(V)))

Proposition 2.10. Let f : (X, 71,7) — (Y,7{,75) be a
fpryc mapping. Then for each fuzzy set v of Y,

7 — Cl(ry — Int(f () A7y — Int(r; — CI(f1(v)))
<A - Cw).

Proof. Let v be a fuzzy set of Y. Then 7 — Clv

isa (7, 7F) — fycsetof Y and so f~1(rf — Clv)isa

(13, 75) — fryc setof X. Hence

7 — Cl(r; — Int(f*@))) A1 — Int(r; — CI(f~1(v)))
<7 — Clrj — Int(f~ (77 — Cl)))A

7 — Int(r; — CI(f ' (7} ~ CW)))

< U - Q).
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Proposition 2.11. Let f : (X, 71,72) — (Y,75,75) be a
fpyc mapping. Then for each fuzzy set y of X,

f(ri — CYr; — Intp) A 7; — Int(r; — Clp))

<7~ CUf(u)).

Proof. Let 4 be a fuzzy set of X. Then, by the above
theorem,

7 — Cl(7; — Intu) A 7; — Int(r; — Clu)
<7 — Clry — It(f L (F(10))))A

— Int(r; — CI(f (S ()
g f Y= CU(f ().

and
f(r — Cl(r; — Intp) A 7; — Int(r,

: — Clu))
< FUHE = Q)
<7 — CIf ()

Proposition 2.12. [6] Let (Xi,71,72), (Xo,75,75),
(Y1,m,7n2) and (Ya, i, n3) be fbis’s such that Xy is
product related to X7. Then the product fi x fo : (X7 X
X2,01,602) — (Y1 x Ya,01,09), where 6 (respectively
o) is the fuzzy product topology generated by 7, and 7
(respectively 7y and 1;) (K = 1,2), of fpyc mappings
fit (X, m,m2) = (Yi,m,n2) and fo @ (Xo, 71, 75) —
(Ya,n{,m3), isa fpyc mapping.

3. Fuzzy pairwise y-irresolute continuous
mappings

Definition 3.1. Let f : (X, 71, 72) — (Y, 77, 75 ) be amap-
ping. Then f is called a fuzzy pairwise ~-irresolute [ fpy-
irresolute] continuous mappingif f ~*(v)isa (7, 7;)— fyo
set of X foreach (7%, 7}) — fyosetvof Y.

From the above definitions it is clear that every fpy-
irresolute continuous mapping is a fpyc mapping. But
the converse is not true in general. A fpsc mapping and
a fpy-irresolute continuous mapping do not have specific
relations. Also, fppc mapping and fpy-irresolute continu-
ous mapping are independent.
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Example 3.2. Let p, po, us and pg be fuzzy sets of
X = {a, b, ¢}, defined as follows:

pr(a) = 0.9, u1(b) = 0.9, 1 = 0.9,
M2(a> = 0.2, p2(b) = 0.2, u2 = 0.2,
us(a) = 0.4, p3(b) = 0.4, uz = 0.4,

( ) =

Ha a) = 07, /L4( = 0.7, Ha = 0.7.

Consider fuzzy topologies

1= {OX’:U'4’ 1X}3T2 = {0X7/u37 1X}a
7_1* = {0)(,/11,1)(},7’2* = {0X71X}'
Then the identity mapping i x : (X, 71, 72) — (X, 75, 73)

is fpyc. Also, ix are fpsc and fppc. Butix is not fpy-
irresolute continuous.

Example 3.3. Let pq, po, pz and pg be fuzzy sets of
X = {a, b, c} in Example 3.2. Consider fuzzy topologies

= {OX’M‘CU 1X}7T2 = {OX,,UQ; lX})
1 = {0x, pa, I1x}, 75 = {Ox, 1, Lx }.

Then the identity mapping i x : (X, 71, ™) — (X, 74, 75)
is fpy-irresolute continuous. But i x is not fppc.

Example 3.4. Let 1, po, ps and py be fuzzy sets of
X = {a,b, c} in Example 3.2. Consider fuzzy topologies

71 = {0x, pg, I1x}, 72 = {0x, p2, 1 x },
m ={0x, 15, 1x}, 73 = {0x, 1, 1x }.

Then the identity mapping ix : (X, 71, 72) — (X, 75, 75)
is fpry-irresolute continuous. But i x is not fpsc.

Theorem 3.5. Let f : (X, 7y, 72) — (Y, 75, 75) be a map-
ping. Then the followings are equivalent:
(1) f is fpy-irresolute continuous.

(2) The inverse image of each (77", 7) — fyc set of Y’

isa (m;,7;) — fycsetof X.

() f((7s,73) =7Clp) < (77, 7;7) = ¥CI(f (1)) for each
fuzzy set p of X.

@ (14, 75) —yCU (@) < (77 ,7) —~Cly) for

each fuzzy set v of Y.

Proof. (1) implies (2): Let v be a (77, T Y — fyc
set of Y. Then v¢is a (77,7f) ~ fyo set. Since f
is fpry-irresolute continuous, f~1(v°) = (f~1(v))¢is a
(1i,75) — fyosetof X. Hence f~1(v)isa (1, ;) — fyo
set of X.

(2) implies (1): Let v be a (7], /) — frosetof Y.

Then veisa (77,77) — fycsetand f~1(v%) = (f~1(v))°



isa (7;, 7;) — fye setof X. Since f~(v)is (1, 75) — fyo
set of X, f is fp~y-irresolute continuous.

(2) implies (3): Let p be a fuzzy set of X. Since

f((ri,75) — v Int) s a (77,77) — fre set of Y,

S (7, 75) = Intw)) isa (13, 7 )— fyc setof X. Hence
(1i,15) — v Clp
< (1, 73) =7 CUFTH(f (W)
< (7, 75) =y CUF (7 77) = v CUF (W)
= 717 = CUF ()
and
F((ri,75) — v Clp)
<SS ) =y CUF)))
< (7 7)) — v CUSf ()

(3) implies (4): Let v be a fuzzy set of Y. Then

F((riy75) =y CUF 1 (v)))
< (7 T) =y CUF(F )
< (rf, 1) — v Cl.

Thus
(1, 75) =y CUI(f~H(v))

< A ) =y QU H))))
<UL 7)) = v Cl).

(4) implies (2): Let v be a (7], 7/) — fycset of Y.
Then
(ri,73) =y CUf (V) < (] 7)) — v Cv)
= [T w).

Therefore, f~!(v)isa (r;, 7;) — fyc setof X.

Theorem 3.6. A mapping f : (X, 71,72) — (Y, 7,75)
is a fpy-irresolute continuous if and only if for each fuzzy
setvofY,

S ) =y Taw) < (ri73) =y Tnt(f 71 (v)).

Proof. Let v be a fuzzy set of Y. Then (7, 7}) —
vIntv < w. Since f is fpry-irresolute continuous,

(77, 77) — vy Intv)isa (73, 7;) — fyo setof X. Hence

fH( 7)) =y Inw)
= (73, 75) — vy It(f =1 (7], 77) — v Inw))
<(m,7)—7 Int(fﬁl(l/)).

Conversely, let v be a (7%, 7';‘) — fyosetof Y. Then
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FHw) = 71 7)) = v Int)
< (1, 75) — v Int(f~H(v)).

Therefore, f~*(v) is a (r;, 7j) — fyo set of X and conse-
quently f is fp~y-irresolute continuous.

Theorem 3.7. Let f : (X, 7, 72) — (Y, 7], 75) be a bi-
jection. Then f is fpy-irresolute continuous if and only if
for each fuzzy set y of X,

(75 77) =y Int(f(w)) < (7, 75) — v Tnt)).

Proof. Let i be a fuzzy set of X. Then by the above
theorem,

FHE )=y Int(f (1)) < (73, 75) = Int(f =1 (f (1))

Since f is a bijection,

(75 77) — v Int(f (1))

= F(F7H @ ) =y Int(f (1))
< f((riy 1) — v Int(F7H(f (1))
= f((m, 1) — v Intw).

Conversely, let v be a (1, 7/') — fyo set of Y. Then

(7, 7)) =y Wt(f(f =1 (v))) < f((7, 75) = Int(f 71 ().
Since f is a bijection,
(7, 7) =y Intw < f((7i,75) — v Int(f ~*(v))).

This implies that

7)) =y o)
< FTH(m ) =y (71 ()
= (5, 73) ~ vy Int(f = ().

Therefore, by the above theorem, f is fpy-irresolute con-
tinuous.

Theorem 3.8. Let f : (X, 7, 72) — (Y,77,75) be for-
irresolute continuous. Then for each fuzzy set v of Y,

FH( ) =y Inw) <
75— Cl(r; — Int(f *(¥))) V1 — Int(r; — CI(f~1(w))).
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Proof. Let v be a fuzzy set of Y. Then (7", 7;') — Intw
1sa(1,3) frosetof Y andso f~1((v7, 7 J) ~ Intw)
isa (r;, 7;) — fryo set of X. Hence

f‘l(( 7, 77) — v Inw) <
— Cl(; — Int(f~(

; — Int(r; — CI(f~ ((+7,
— Cl(r; — Int(f~1(v)))

* %
Ty T

)~ Tnt)))v
)~y Intw))) <

*

T

—~ o~

j
*

7j

\4

Theorem 3.9. Let f : (X, 7, 7) — (Y, 75, 75) be fpy-
irresolute continuous. Then for each fuzzy set v of Y,

— Cl(ry — Int(f (v N AT — Int(r; — Cl(f_l(y)))

<f Y1) — v Cl).

Proof. Let v be a fuzzy setof Y. Then (7}, 7}) —v Clv
isa (77, 75) — fycsetof Y and so f~1((7/, J) ~ Cly)
isa (7;,7;) — fycset of X. Hence

— Cl(rj = Int(f~ () A1y~ Int(r; ~ CI(f 1 (v)))

<7 — Cl(ry — Int(f =1 (7", 7}) — v CW))A

- Int(Tl - Cl(f (( Ti s J) Y Cll/)))

<f Y7, 7)) — v Cly).

Theorem 3.10. Let f : (X, 71, 72) — (Y, 7, 75) be fpy-
irresolute continuous. Then for each fuzzy set p of X,
f(mi — Cl(7; — Intp) Am; — Int(r; — Cly))
< (77 75) =7 CUf(w)-

i'j

Proof. Let 1 be a fuzzy set of X. Then, by the above
theorem,

7, — Cl(7y — Intu) A 7; — Int(7; — Cly)
< 7= Cl7y = Int(f ™ (F(1))A
= Int(ri — CI(f~1(f(1)))
Sf N ) = CUf(w)))-
and
f(Ti — Cl(r; — Intw) A 7; — Int(r; — Cly))
PO 7 = v CUS())))
< (Ti T = Cl(f(u))-

Theorem 3.11. Let f : (X, 71, 72) — (Y, 77, 75) be fpy-
irresolute continuous. Then for each (7, 7)) — fyo set v

of Y,
f7Hw) < (i, 1) = v Imt(f (7} = Cl(7} — Intw)v

7 — Int(r; — Clv))).
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5 — Int(r; — CI(f*(v))).

Proof. Let v be a (77, 77) — fyo setof V. Then

F7Hw)
<f

Since f~

(T = Cl(7]" = Inw) V17 — Int(r] — Clv)).

Yv)isa(r, 1) — fyo setof X,

) = (7, 7) — v Int(f 71 (v))
< {7, 15) — 'yInt(f_l(T;-‘ ~ Cl(1} — Intv)Vv
71— Int(7} — Clv))).
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