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Abstract
A fuzzy modeling method is proposed to build the dynamic model of a walking-beam reheating furnace from the recorded data. In the
proposed method, the number of membership function on each variable is increased individually and the modeling accuracy is evaluated
iteratively. When the modeling accuracy is satisfied, the membership functions on each variable are fixed and the structure of fuzzy model is
determined. Because the training data is limited, in this process, as the number of membership function increase, it is highly possible that
some rules are missing, i.e., no data in the training set corresponds to the consequent part of a missing rule. To complete the rulebase, the
output of the model constructed at the previous step is used to generate the consequent part of the missing rules. Finally, in the real time
application, a rolling update scheme to rulebase is introduced to compensate the change of system dynamics and fine tune the rulebase. The

proposed method is verified by the application to the modeling of a reheating furnace.
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1. Introduction

Fuzzy logic modeling has been proposed as a viable
alternative of traditional modeling approach and successfully
employed in various fields. Due to this, considerable efforts
have been devoted to the fuzzy modeling approaches in the past
several decades.

Takagi, Sugeno and Kang proposed a method to combine the
linguistic description with available mathematical description of
the process to construct a fuzzy system model [1, 2]. Wang and
Mendel proposed a general method to generate fuzzy rules from
the data and then to design the fuzzy systems [3]. The key of
this approach is that fuzzy rules can be extracted from recorded
input-output data pairs and combined with linguistic rules to
create the rulebase. The drawback is that the designer must
divide the input space into fixed sections, and must decide the
number of membership function in advance. To solve this
difficulty, Nie proposed an approach to construct a multivariable
fuzzy model from numerical data through a self-organizing
counter-propagation network [4]. Abe and Lan developed a
method to extract fuzzy rules directly from numerical input-
output data for pattern classification and function approximation
[5, 6]. Some optimization methods are also employed in fuzzy
modeling [7-12]. In these approaches, the fuzzy rules are
defined by activation hyperboxes which show the existence
region of data for a class and are extracted by resolving overlaps
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between two classes recursively.

The existed methods depend on the well-distributed numerical
data to extract rules. But, in practice, the numerical data are
often unevenly distributed, or sparsely sampled. It is highly
likely that the obtained rulebase is incomplete and even human
experts cannot complete it. In this paper, we proposed a method
to determine the structure of the fuzzy model by increasing the
number of membership functions on each variable individually
and step by step, and evaluating the performance of model at
each step. To complete the missing rules, at the beginning, a
small number of membership functions on input variable are
defined such that the obtained rulebase is complete or can be
completed by prior knowledge easily. Then, with the increase of
fuzzy sets on input, a rulebase with more rules can be obtained.
If the generated rulebase is incomplete, the model constructed at
previous step is used to complete the rulebase.

_\/_U Zonel \/ Zone?2 \/ Zone3 |
—

-
Zone4 I_\ Zone5 Zone6
ﬂ [ ]

l Soaking Area ’

Waste gas flowing
direction

Slab moving direction

|Tail Area ‘ Preheating Area ‘ Heating Area

Figure 1. The structure of the walking-beam reheating furnace

Although this method can generate complete rulebase, the
uncertainties and the changes of system dynamics in practice
will definitely degrade the modeling performance. In addition,
as new data come in, the rulebase should be adjusted
accordingly to improve the modeling performance. Therefore, in
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real time application, a certain length of past-recorded data is
use to fine tune the rulebase and these rules are used to update
the rulebase. Since these newly generated rules contain the
present system dynamic information, the model output will
become more accurate.

2. Problem Description

Walking-beam reheating furnace is an important device in the
steel industry. In the furnace, all slabs are heated to reach a
predefined discharging temperature and a balance of
temperature distribution in slabs. The distribution and move of
the slab in the furnace is subject to the heating capacity of the
reheating furnace and state of rolling line such as rolling pacing,
etc. The structure of the walking beam reheating furnace
discussed here is shown in Figure 1. It contains tail area,
preheating area, heating area, and soaking area. Tail area has no
fuel input and the slabs in this zone are heated by waste gas. The
function of preheating and heating areas is to heat the slabs. The
aim of soaking area is to adjust the temperature gradient so that
the inner temperature and surface temperature of the slabs can
reach a balance. During the operating, slabs in the furnace move
from tail area to soaking area. For modeling purpose, cach area
is further divided into upper and lower zones. The zones in the
furnace are denoted as zonel to zone6, respectively.

Due to the high nonlinearity and various disturbances, it is
difficult to build the model by using conventional mathematical
methods. The universal approximation theorem [13] provides a
theoretical basis for using fuzzy system to build the dynamic
model of the reheating furnace. In this paper, the model of each
zone is constructed individually. The output and inputs are
decided in advance as follows:

V(k+1) = the predictive temperature of a zone at time instant
k+1, the output of the system.

x1(k) = heat absorbing ability of slabs in a zone at instant k.

x2(k) = the fuel flux of a zone at time instant k.

x3(k) = the temperature of a zone at instant k

The system model has the form of’

ylk+1) = f (x1(k), x2(k), x3(k) )

3. The Determination of the Fuzzy Model
Structure

The structure of the fuzzy model is determined as follows.

Step 1: Define a small number (for example, two) of
membership functions on each input variable.

Without loss of generality, the evenly spread membership
functions with triangular shape are defined to cover each
variable, At this stage, the numbers of membership functions on

these variables are not fixed. For simplicity, these variables are
denoted as unfixed variable.

Step 2: Construct the fuzzy system based on Table Lookup
method [3] on training data, and evaluate its performance on
both training data and testing data.

For the mentioned walking-beam reheating furnace, at time
instant k, the extracted fuzzy rules can be expressed as follows:

R*TF x(k) is Ay and x,(k) is 4,™ and x5(k) is 45", THEN p(k)
is B7.

where x,(k), x,(k), x3(k) are the input signal, y(k) is the output
signal. 4, 4,", 45" are the fuzzy sets on the input variables x;,
Xy, X3, respectively. B / is the fuzzy sets on the output variable.
Then, the model can be constructed and the modeling accuracy
is evaluated.

Step 3: Increase the number of membership functions on an
unfixed variable, then repeat step 2 to decide whether to keep
this increase operation or not.

If the performance improves, then this increase operation is
kept and the number of membership functions on this variable
remains unfixed and will be increased in the following iteration.
If the performance does not improve or the improvement is
below a predefined threshold, then this increase operation is
cancelled. In this case, the number of membership functions on
this variable is determined and this variable is marked as a fixed
variable. The number of membership functions on this variable
will not be increased in the following iteration.

Step 4: Repeat step 3 until all the variables are marked as
fixed variables. Then the structure of the model is determined.

The flow chart of this process is illustrated in Figure 2.
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Figure 2. The flow chart of the determination of fuzzy system
structure
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Note that, at the end of Step 4, optimization algorithms can be
introduced to adjust the membership function parameters, such
as position and support, to further improve the modeling
accuracy. This optimization is not applied in this paper.

4. Complete Missing Rules

Suppose the recorded N data pairs are (x/%, xo, ..., x,/; vy ©),
p=1,2,...,N, where x is the input of the model in the space [x; min,
X1 max] *[*2,mins X2,max] XX [X¥nmins ¥nmax] and y is the output in the
Space [Vmin Vmax)- OUur objective is, in every iteration of the
model structure identification process mentioned in Section 3, to
get complete rulebase from this set of data and construct a fuzzy
model f(x) to describe the behavior of the system.

As described in the Step 1 in Section 3, at the beginning, for
each input variable [x; nin X;mar)s i=1,2, ..., n, a small number of
fuzzy sets is defined to cover it. In the below description,
triangular membership functions in a two-input-one-output
problem with two evenly distributed fuzzy sets A', 4* on input
variables and four evenly distributed fuzzy sets B, B, B ,B*on
output variable is used as an example. This initial condition is
shown with solid line in Figure 3. Obviously, four fuzzy rules
should be extracted from recorded data in this step. Because of
the small number of rules at this step, even if there is a missing
rule, it can be completed by human knowledge very easily.

Then, rules are extracted from training data pairs and a fuzzy
model is constructed to describe the system behavior. By using
singleton fuzzifier, center average defuzzifier, and product
inference engine, the fuzzy model can be written as follows:

NEA( I BTHES):
T

Where x is the input to the fuzzy system, f (x) is the output of

fj(,\”) =

the fuzzy system, u A,,(x,.) is the membership value of x; on
fuzzy set A and y is the center of fuzzy sets on output variable.

By using the constructed model, the modeling accuracies can
be evaluated on both training and testing data sets. If the
modeling performance is acceptable, or a certain predefined
criterion is satisfied, then this constructed fuzzy model can be
used to describe the behavior of the real system. Otherwise, the
structure of the model should be changed to approximate the
real system. When the number of fuzzy sets on each input
variable is increased as the dashed line in Figure 3, more fuzzy
rules should be generated. However, due to the limited number
of data in training set, it is highly possible that there are missing
rules as the number of rules increases. To complete the rulebase,
the constructed model at the previous step is utilized to generate
the consequent part of the missing rule.

After the increase of the number of fuzzy sets on an input
variable, if there is a missing rule, the centers of the fuzzy sets
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on the input variables of this missing rules [x.;, x.2, ..., x.,]) are
input to the model constructed at the previous iteration and the
model output is assigned to a fuzzy set on the output variable
and employed as the consequent part of the missing rule. For
example, if the missing rule is:

IF x; is 4," and x, is 4,° Thenyis ?

Suppose the center of A" is x,'and the center of 4, is x,°,
then, with the input being x=[x,' x,’] to the previous model f(x),
we have an output of y,. Additionally, suppose that y, has the
highest membership value on fuzzy set B”, then the missing rule
can be completed as:

IF x; is 4,' and x, is 4,° Then y is B™.
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Figure 3 Example of generating rules from data in a two-input
case

Through this approach, the rulebase generated at each
iteration will be complete. This rulebase is used to build the
model in the next iteration f;,(x) and it is expected that the
modeling accuracy is improved.

If the modeling of f;:,(x) is not satisfactory, increase the
number of fuzzy sets on another input variable and repeat the
process as described in Section 3. From theorem of universal
approximation [3], it is clear this model can approximate any
continuous function on a compact set to any accuracy. Therefore,
a satisfactory fuzzy model can be obtained to approximate the
real system by increasing the number of fuzzy sets.

Since the increase of fuzzy set on input variables is a repeated
process and results in sparsely distribution of the training data in
the whole space, a criterion should be defined to terminate this
process. The definition of criterion is problem dependent. In our
paper, the criterion is that the modeling accuracies on training
data and testing data are similar and reach a predefined level.
Meanwhile, optimization method can be employed to tune
model parameters.
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The advantage of the proposed method is that the generated
rulebase is always complete. So there is a unique rule
corresponding to a case of all the possible combinations of the
fuzzy sets defined in the input space even if the number of
recorded data is small.

5. Real Time Update of Rulebase

Although the scheme in Section 4 can generate complete
rulebase and improve the modeling accuracy, the missing rules
are generated through a rough approximation. In addition, the
rulebase is built offline once for all through the training data and
usually the rulebase does not change. However, during the
operating of the system, the dynamics of system may change
and unmodelled uncertainty may degrade the performance of the
model. To make the model accommodate the change of system
dynamics and uncertainties, an online real time rulebase update
scheme is developed here.

As illustrated in a two-dimension example in Figure 4,
suppose the square is the entire working domain of the discussed
system. The training data, in most cases, cannot cover the entire
working domain and suppose it only covers the shaded zone.
Hence, from the recorded data, it is almost always impossible to
obtain the behavior of system in the entire working domain.
Consequently, when fuzzy system is used to model system
dynamics based on this training data, the model is not only
inaccurate, but also unreliable, especially when the working
condition and environment has changed. Moreover, even with a
complete rulebase, the number of those rules that describes
system behavior in the working domain is limited. Thus, in
practical application, the rulebase should be, if possible, updated
during the operating of the system.
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Figure 4. The change of working domain in a two-dimension
sample

In the modeling process, to check the validity of the
constructed model, the recorded data are usually divided into
training set and testing set. As mentioned above, if the model
errors on the two sets reach a certain level and get a balance, the
model can be utilized to describe the system behavior. Let’s
investigate Figure 4. Suppose the initial working domain of
system is A and the model is put into use at this time instance.
After a period of time, the working domain of system may
change to B. Then the system may fire some rules that cannot be
generated by the recorded data. Hence, a method should be
introduced to guarantee that the constructed model could
describe system behavior at working domain B.

If the rules in the rulebase cannot reflect the mapping
relationship from the input space to the output space in the
current working domain, no matter how hard we tune the
parameter set, satisfactory performance may not be guaranteed.
Suppose working domain changes from working domain C to
working domain A, although A4 is covered by formerly generated
rules, these rules may not describe system behavior exactly
under current operating condition due to the uncertainty and
change of system dynamics. In other words, a new set of rules
should be extracted, if necessary, to reflect the system behavior
under the current operating condition. Then an approach should
be introduced to update rules from time to time so that these
rules can reflect the current system dynamics.

To reach this goal, a certain length of recorded data, say L
data, is determined, such that the current dynamics of system is
well-described by these L most-recent recorded data. In the
operation of the system, always keep the last L pairs so that
these L data are used to update the rulebase as illustrated in
Figure 5. By using the methods mentioned in Section 4, a new
set of complete rulebase is obtained. If there are conflicting rules,
the rule with the greatest degree of reliability is selected.
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Figure 5. The process of generating fuzzy rules from most-
recent recorded data
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Figure 6. The model output (blue) and measurement (red) of
zone 3 and the modeling error. The absolute average error ¢l is
8.5379, 8.2740, and 8.7138 on entire data set, training set, and
testing set, respectively. The square error ¢2 is 116.7924,
111.5349, and 120.2974, respectively.

1300
1280

1260 1

e
v P ‘ﬁ
S o . - N b v .
1240 L . 0T e oy
i [ e
1220 - [T A RS T DT U St RS
11 1 . 4 WA 4 S
) ' '
1200 R
1180 - - . - - - . - -
0 100 200 300 400 500 600 700 800 900 1000
30
20 . - - - -
o
10 - P + R T A
[ i
) , . ! .
w 1 ) i
-10- - e -
20
-30 - . - - - - - - - -
o 100 200 300 400 500 600 700 800 900 1000

Figure 7. The model output (blue) and measurement (red) of
zone 4 and the modeling error. The absolute average error c1 is
8.3210, 8.0209, and 8.1410 on entire data set, training set, and
testing set, respectively. The square error ¢2 is 104.0946,
97.2042, and 108.6107, respectively.

From above description, it is clear that the update of rulebase
is a rolling process. Suppose the current time instance is i+L, the
newly recorded data are from time instance i to i+L, and the
rulebase is updated by rules generated from these L data pairs.
While at the next time instance i+L+1, the rules are generated
from data recorded from time instance i+1 to #+L+1. In the
same way, a strategy of parameter optimization can be
introduced to optimize model parameter at every period if
necessary and there is enough computation time. Since the
structure of the fuzzy model has been determined, this update
operation of rulebase will not cost too much computation and,
therefore, can be realized on-line suppose the sampling rate is

186

not very high. If, in some cases, the sampling rate is high and
there is no enough computation time for update, this update
operation can be performed every several sampling period rather
than every sampling period. The idea is the same, using some
recent recorded data to capture the current system dynamics.

6. Application to Reheating Furnace Modeling

In order to evaluate the performance of the model, some
criteria need to be defined. The criteria should be able to support
efficient algorithms to solve the optimization problem when the
optimization is needed. In this section, two criteria are
introduced to assess the performance of the model. The first one
is absolute average error, which is formulated as follows:

1
e = o 2l (0= 50|
The second one is square error
1 ~ N2
¢, = WZ M CROESI0O)]

where y,,, y are the model output and the measurement from the
reheating furnace, respectively.

In the following simulations, 1000 recorded data pairs are
utilized to verify the proposed method. The first 700 pairs of
data are used as training set and the other 300 pairs as testing set.

The number of fuzzy sets on each input variable is started
from two and that on output variable is started from four. That is,
two membership functions are defined to cover each input
variable and four membership functions are defined to cover
output space. The membership functions are triangular which
are evenly spread. Then, the number of fuzzy sets on each input
variable is increased as described in Section 3.

In the first example, the model of zone 6 is verified with
L£=120 and the result is shown in Figure 6. The sampling period
of the recorded data is 1 minute. Hence, the L data sets contain
the dynamics of the furnace in the past 2 hours. The model
output, measurement are plotted in the upper subfigure and the
error between them is plotted in lower subfigure of Figure 6.
The value of the mentioned two criteria ¢; and ¢, on the entire
data set, training data set, and testing data set are listed in the
caption, respectively.

In the second example, shown in Figure 7, is the model of
zone 4 with L=100. The result and performance evaluation, as in
Figure 6, are given in the caption of Figure 7. It is clear from the
comparisons that the proposed method can improve the
modeling accuracy efficiently.
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7. Conclusion

In this paper, a modeling method is proposed to identify the
structure of fuzzy model, complete the rulebase, and update the
rulebase in real time. The method starts from a small number of
membership functions on each variable to build a rough model.
Then, the number of membership functions on each variable is
increased to improve the accuracy of model. In this process, an
approach is applied to complete the rulebase as the increase of
fuzzy rules. The update of the rulebase is carried out in every
computation period in real application in a rolling way to
accommodate the change of system dynamics and uncertainties.
The proposed method is verified on the modeling of a walking
beam reheating furnace.
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