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A DOUBLY ROBUSTIFIED ESTIMATING FUNCTION
FOR ARCH TIME SERIES MODELS'

SagMm KiMm! AND S. Y. HwANG?

ABSTRACT

We propose a doubly robustified estimating function for the estimation
of parameters in the context of ARCH models. We investigate asymptotic
properties of estimators obtained as solutions of robust estimating equations.
A simulation study shows that robust estimator from specified doubly ro-
bustified estimating equation provides better performance than conventional
robust estimators especially under heavy-tailed distributions of innovation
errors.
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1. INTRODUCTION

It is well known that usual -estimation methods such as maximum likelihood,
least squares may be very sensitive to outliers in the observations. In this case,
one of the methods which resolves the problem is so called the robust estimation
method. There are many sources in robust estimation literature such as, Denby
and Martin (1979), Huber (1981) and Basawa et al. (1985). Also, Kulkarni and
Heyde (1987) proposed an optimal robust estimation for time series models based
on the framework of Godambe (1985)’s estimating function.

Chan and Cheung (1994) studied robust estimation for threshold autore-
gressive models. They investigated effects of additive outliers (AO) based on
generalized-M (GM) estimate for models. They argued that GM approach may
be preferable to least squares estimation method under the existence of additive
outliers (AO) in the observations.
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Muler and Yohai (2002) proposed two robust estimates such as 7 and fil-
terd T-estimates for ARCH(p) models. They presented that proposed estimates
work better than maximum likelihood estimate even under the small percentage
of outlier contamination. Hui and Jiang (2005) investigated robust estimation
based Li-norm for double-threshold autoregressive conditional heteroscedastic
(DTARCH) model which was originally proposed by Li and Li (1996).

In this paper, following similar ideas of Basawa et al. (1985), we will propose
a doubly robustified estimating function which is relatively new in the ARCH
context. We will investigate asymptotic properties of estimators obtained as
solutions of the doubly robustified estimating functions. Small simulation study
shows that the proposed estimators outperform others.

2. DouBLY ROBUSTIFIED ESTIMATING FUNCTIONS

In this section, we are dealing with the following AR-ARCH model which was
proposed by Engle (1982). This model will be called by (M).

(M) ye= ¢yt +e,
[ htet, ht = & + 0516?_1, € ~ 3.1.d. N(O, 1), |¢’ < 1.

Consider the following doubly robustified estimating function (DREF, for short)
given by

where § = (¢, ag, 1) and ¥; and ¥, are bounded and continuous functions on 6.

Su(0) =3 <8\t/(}%)

t=1

Typically ¥; and ¥, are chosen as standard Huber’s function. The term “dou-
bly” refers to two robust functions ¥y and ¥y instead of single robust function
commonly used in the literature. When ¥1(z) = ¥3(z) = x, Sp(0) is the same as
the least squares (LS) estimating function. If ¥5(z) = z, and ¥1(z) is a bounded
function, then (2.1) reduces to those of Denby and Martin (1979). As Kulkarni
and Heyde (1987) pointed out, DREF defined in (2.1) is of special interest to
compare the performance of the proposed robust EF with that of Denby and
Martin (1979).
The following conditions are imposed for deriving asymptotic results.

1. {y.} is stationary and ergodic with Ey? < oo,
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2. ¥; and Uy are bounded and continuously differentiable with respect to
fc o,

3. EO;()=0,i=1,2,

4. |A(6,) — A()] 250 and

5. —%sn(o”n) —A@B)| 0,

where 6, is a /n-consistent estimator of § and A(f) = E(S,,(6)) where the prime
(') indicates differentiation. Conditions 4 and 5 refer to smoothness conditions
on S, (6).

We are now in a position to present asymptotic normality of DREF Sp(0) in
(2.1).

LEMMA 2.1. Under conditions 1-3, we have as sample size n goes to infinity,
1
vn

where B(8) = E(S,(0)Sn(9)T) with T denoting transpose of the vector.

Sa(8) -4 N(0, B(6)),

PrOOF. Notice that S,(#) is a sum of martingale differences due to condition
3. It follows from conditions 1 and 2 that a sequence of martingale differences

{n (D))

forms a stationary and ergodic time series. Hence martingale central limit theo-

rem tells us

Sa(8) —2> N(0, B(6)),

-

where B(8) = E(Sn(0)S,(8)T) of which the existence is ensured by condition 1,
completing the proof. O

Let é,; denote the solution of S,(#) = 0. The following theorem establishes
consistency and asymptotic normality of 6,, which is the solution of DREF.

THEOREM 2.1. Under conditions 1-5, as n tends to infinity,
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(1) 6, 2> 9,

(2) V(05 — 6) -5 N(0, {A(B)B~1(9)A(6)} V).

PrOOF. It will be assumed that S,(f) = 0 provides a unique solution On.
This will be relaxed later. Using the Taylor’s expansion of S,(8) about 6 = 65,
one can write

~Su(8) = S3(62) (n —0) (22)
where |6} — 0] < |é;1 — 6|. Consequently

_a g 17188 $u(6)

It then follows from smoothness conditions 4 and 5 that

_n-lg 2
-0y = sj/(g)]s ©) 1 o1). (2.3)

Combining Lemma 2.1 and condition 4, assertion (2) readily follows. The result
(1) is an immediate consequence of (2). Even for the case when 6, is a near zero
of S(8) =0, i.e., Sp(6,) = 0p(1), (2.2) continues to hold asymptotically, i.e.,

~Sn(6) = 5,(03) (6 — 0) + 0p(1)

and in turn (2.3) remains valid. Thus, results (1) and (2) again hold. O

3. SIMULATION STUDY

To evaluate the performance of robust estimators from DREF, we consider
three different estimating functions given below. We compare proposed estimator
8, as a solution of Ss3(f) = 0 defined in (3.3) with other estimators based the
first two estimating functions appeared in (3.1) and (3.2).

su = Y L tual (2, (0>) ()

Ss3(0) = > ¥y ( — Py 1>\112 (%Et(\/:_t)) (3.3)
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Here ¥; and ¥, are chosen as standard Huber function given by

z, if |z| <k,
\Ill(x) = \112(.’1:) = k, f 2>k, k>0,
—k, if x <~k

Estimation of # = (¢, ag, a1) is carried out based on the following one step
scoring equation.

b =015 - | 2 - (3.4)

—— -1 o —

S (57'1(9&9)) Sn(6Ls)
where 0:; is a preliminary /n-consistent LS estimator of # which can be used as
initial estimator for parameter of interest. In this simulation study, we focus on
¢ and other parameters are treated as nuisance parameters. For each estimating
functions (3.1) to (3.3), sample size is given by 200 and number of iterations to get

sample means and standard deviations is set to be 30. After some calculations,
we use

S1(0) , ;
so0)= 0 | - 9, (542) s (s 42)
S3(6)
+(0) 0]
v (42) v (ww,—)
and

83] % 851

8¢ Bap Oay
Sis(0) = | 5% 5% 5

3.1. Case 1: Normal errors

Consider the case when {e;} is i...d. N(0,1). Based on the simulated time
series of length n = 200, we obtained an for each estimating functions Si1, So2
and Ss3. In this simulation, fix ap = 0.2 and 3 = 0.2 and they are treated as the
nuisance parameters. Next, mean and standard deviation (S.D) are calculated
based on 30 replications. One can notice from Tables 3.1 and 3.3 that DREF
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TABLE 3.1 n = 200,k = 1.5 (normal distribution) .

EF S11 Sao Ss3

¢ mean S.D mean S.D mean S.D
0.3 | 0.2910 | 0.0738 | 0.2978 | 0.0752 | 0.2917 | 0.0668
0.5 | 0.4887 | 0.0502 | 0.4907 | 0.0640 | 0.4868 | 0.0527
0.7 | 0.6894 | 0.0324 | 0.6988 | 0.0440 | 0.6878 | 0.0416
0.9 | 0.8931 | 0.0369 | 0.9008 | 0.0407 | 0.8953 | 0.0370

TABLE 3.2 n = 200,k = 2 (normal distribution)

EF S11 Sa2 Sas

¢ mean S.D mean S.D mean S.D
0.3 | 0.2910 | 0.0738 | 0.2888 | 0.0711 | 0.2924 | 0.0645
0.5 | 0.4887 | 0.0502 | 0.4878 | 0.0634 | 0.4890 | 0.0511
0.7 | 0.6894 | 0.0324 | 0.6969 | 0.0426 | 0.6886 | 0.0385
0.9 | 0.8931 | 0.0349 | 0.9000 | 0.0366 | 0.8959 | 0.0351

TABLE 3.3 n = 200,k = 2.5 (normal distribution)

EF S11 Sao S33

003 mean S.D mean S.D mean S.D
0.3 | 0.2910 | 0.0738 | 0.2946 | 0.0743 | 0.2917 | 0.0641
0.5 | 0.4887 | 0.0502 | 0.4892 | 0.0618 | 0.4899 | 0.0487
0.7 | 0.6894 | 0.0324 | 0.6967 | 0.0376 | 0.6892 | 0.0369
0.9 | 0.8931 | 0.0369 | 0.8988 | 0.0375 | 0.8952 | 0.0342

S33 provides more accurate g/b; in the sense of the smaller S.D. Also, across all
parameter values ¢ = 0.3,0.5,0.7 and 0.9, as k increases, biases of 5; from DREF
S33 tend to be smaller than those for S1; and Sag. It is however noticed that Sz3
gains slight edge over S1; and Sao for small k, say, k = 1.5.

3.2. Case 2: t-distributions

Consider the case where {e;} is i.1.d. t-distribution with degrees of freedom
3[t(3), see Tables 3.4 to 3.6] and 5[t(5), refer to Tables 3.7 to 3.9], respectively.
Variances of ¢(3) and #(5) are standardized as unity. It is noted for heavy-tailed
distribution t(3) that a remarkable improvement of the accuracy (smaller S.D)
is achieved for Ss33, compared to S1; and S22. Also, for most values of ¢ = 0.3
to ¢ = 0.9, @ for S33 reveals the smaller bias than S1; and Sp;. To summarize,
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TABLE 3.4 n = 200,k = 1.5 (¢(3) distribution)

EF

Sll

S22

533

mean

S.D

mean

S.D

mean

S.D

0.3

0.2789

0.0884

0.2768

0.0878

0.2832

0.0518

0.5

0.4866

0.0647

0.4880

0.0660

0.4868

0.0419

0.7

0.6936

0.0450

0.6839

0.0554

0.6933

0.0353

0.9

0.8960

0.0206

0.8993

0.0220

0.8932

0.0206

TABLE 3.5 n = 200,k = 2 (t(3) distribution)

EF

Sll

522

S33

mean

S.D

mean

S.D

mean

S.D

0.3

0.2789

0.0884

0.2897

0.0870

0.2824

0.0529

0.5

0.4866

0.0647

0.4879

0.0720

0.4881

0.0419

0.7

0.6936

0.0450

0.6916

0.0422

0.6922

0.0361

0.9

0.8960

0.0266

0.8994

0.0290

0.8938

0.0261

TABLE 3.6 n = 200,k = 2.5 (¢(8) distribution)

EF

S

S22

Ss3

mean

S.D

mean

S.D

mean

S.D

0.3

0.2789

0.0884

0.2900

0.0839

0.2846

0.0564

0.5

0.4866

0.0647

0.4816

0.0707

0.4881

0.0450

0.7

0.6936

0.0450

0.6949

0.0408

0.6923

0.0373

0.9

0.8960

0.0266

0.8999

0.0256

0.8941

0.0250

TABLE 3.7 n = 200,k = L5 (¢(5) distribution)

EF

Sll

822

S33

mean

S.D

mean

S.D

mean

S.D

0.3

0.3198

0.1145

0.3143

0.0665

0.3163

0.0604

0.5

0.5088

0.1004

0.5059

0.0484

0.5087

0.0469

0.7

0.6999

0.0773

0.7014

0.0375

0.7021

0.0371

0.9

0.8939

0.0449

0.8959

0.0272

0.8943

0.0285

393

proposed DREF S33 outperforms conventional functions S11 and Sz especially
when the error distribution is heavy-tailed such as t(3) and #(5).
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TABLE 3.8 n = 200,k = 2 (t(5) distribution)

SAHM KiM AND S. Y. HWANG

EF S11 So2 S33

¢ | mean S.D mean S.D mean S.D
0.3 | 0.3198 | 0.1145 | 0.3163 | 0.0572 | 0.3157 | 0.0603
0.5 | 0.5088 | 0.1004 | 0.5083 | 0.0430 | 0.5092 | 0.0430
0.7 | 0.6999 | 0.0773 | 0.7021 | 0.0366 | 0.7022 | 0.0364
0.9 | 0.8939 | 0.0449 | 0.8966 | 0.0269 | 0.8950 | 0.0259

TABLE 3.9 n = 200,k = 2.5 (¢(5) distribution)

EF S11 82 Sa3

¢ mean S.D mean S.D mean S.D
0.3 | 0.3198 | 0.1145 | 0.3171 | 0.0577 | 0.3163 | 0.0605
0.5 | 0.5088 | 0.1004 | 0.5100 | 0.0434 | 0.5103 | 0.0407
0.7 | 0.6999 | 0.0773 | 0.7037 | 0.0361 | 0.7037 | 0.0329
0.9 | 0.8939 | 0.0449 | 0.8971 | 0.0277 | 0.8957 | 0.0278

We propose a doubly robustified estimating function for ARCH models and
investigate asymptotic properties of estimators which are the solutions of robust
estimating equation. Under the normal distribution of innovation errors, LS esti-
mator works fine, but we can see better performance of proposed estimators than
LS estimator as well as partially robust estimator under heavy-tailed distribu-
tions of innovation errors. This study can be extended to cover more complicated

models.
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