DOI QR코드

DOI QR Code

극저온 환경에서 탄소섬유강화 복합재료의 수지조성변화에 따른 인장 물성 측정

Tensile Properties of CERP Composite with Different Resin Composition under Cryogenic Temperature

  • 김명곤 (한국과학기술원 기계공학과 항공우주공학) ;
  • 강상국 (한국과학기술원 기계공학과 항공우주공학) ;
  • 공철원 (한국항공우주연구원) ;
  • 김천곤 (한국과학기술원 기계공학과 항공우주공학)
  • 발행 : 2007.08.31

초록

본 연구에서는 에폭시 수지조합에 따른 탄소섬유강화 복합재 프리프레그 제작 및 극저온 인장시험을 통해 극저온에서 우수한 기계적 물성을 갖는 복합재 수지조합을 제시하였다. 환경챔버를 이용하여 상온으로부터 $-150^{\circ}C$ 까지 6회의 열-하중 사이클을 수행한 일방향 복합재 시편에 대하여 $-150^{\circ}C$에서 복합재의 인장강도와 강성을 측정하였다. 또한, $-150^{\circ}C$에서 복합재의 섬유수직방향 인장물성 및 면내 전단물성과 같은 모재 지배적인 물성 측정을 통해 수지조성변화가 섬유와 모재의 계면에 미치는 영향을 고찰하였다. 그 결과, bisphenol-A 형의 에폭시와 CTBN 고무 변성 형 필러를 비교적 다량으로 함유한 수지조성을 갖는 복합재 시편이 극저온에서 우수한 기계적 물성을 보임을 확인하였다.

In this study, carbon fiber reinforced polymeric (CFRP) composites with different resin composition were manufactured and resin formulation in composite materials were presented through tensile tests for cryogenic use. Thermo-mechanical cyclic loading (up to 6 cycles) was applied to CFRP unidirectional laminate specimens from room temperature to $-150^{\circ}C$. Tensile tests were then performed at $-150^{\circ}C$ using an environmental test chamber. In addition, matrix-dominant properties such as the transverse and in-plane shear characteristics of each composite model were measured at $-150^{\circ}C$ to examine the effects of resin formulation on their interfacial properties. The tensile tests showed that the composite models with large amounts of bisphenol-A epoxy and CTBN modified rubber in their resin composition had good mechanical performance at cryogenic temperature (CT).

키워드

참고문헌

  1. R. Heydenreich, 'Cryotanks in Future Vehicles,' Cryogenics, Vol. 38, 1998, pp. 125-130 https://doi.org/10.1016/S0011-2275(97)00122-7
  2. J. B. Schutz, 'Properties of Composites Materials for Cryogenic Applications,' Cryogenics, Vol. 38, 1998, pp. 3-12 https://doi.org/10.1016/S0011-2275(97)00102-1
  3. D. C. Freeman Jr., T. A. Talay and R. E. Austin, 'Reusable Launch Vehicle Technology Program,' Acta Astronautica, Vol. 41, No. II, 1997, pp. 777-790 https://doi.org/10.1016/S0094-5765(97)00197-5
  4. B. W. Grimsley, R. J. Cano, Norman J. Johnson, Alfred C. Loos and William M. McMahon, 'Hybrid Composites for LH2 Fuel Tank Structure,' International SAMPE Technical Conference Series, Vol. 33, 2001, pp. 1224-1235
  5. S. Karen, Whitley and Thomas S. Gates, 'Thermal/ Mechanical Response and Damage Growth in Polymeric Composites at Cryogenic Temperatures,' AIAA, 2002
  6. T. Aoki, T. Ishkawa, H. Kumazawa and Y. Morino, 'Cryogenic Mechanical Properties of CF/polymer Composites for Tanks of Reusable Rockets,' AIAA, 2000
  7. G. Hartwig, R. Hubner, S. Knaak and C. Pannkoke, 'Fatigue Behaviour of Composites,' Cyogenics, Vol. 38, 1998, pp. 75-78 https://doi.org/10.1016/S0011-2275(97)00113-6
  8. 김명곤, 강상국, 김천곤, 공철원, '극저온 환경에서 탄소섬유강화 복합재의 인장 물성에 관한 연구,' 한국복합재료학회지, 제17권, 제6호, 2004, pp. 52-57
  9. F. Sawa, S. Nishijima and T. Okada, 'Molecular Design of an Epoxy for Cryogenic Temperatures,' Cryogenics, Vol. 35, No. II, 1995, pp. 767-769 https://doi.org/10.1016/0011-2275(95)90910-8
  10. J. F. Timmerman, Matthew S. Tillman, Brian S. Hayes and James C. Seferis, 'Matrix and Fiber Influences on the Cryogenic Microcracking of Carbon Fiber/epoxy Composites,' Composites part A, Vol. 33, 2002, pp. 323-329 https://doi.org/10.1016/S1359-835X(01)00126-9
  11. M. Hussain, A. Nakahira, S. Nichijima and K. Niihara, 'Evaluation of Mechanical Behavior of CFRC Transverse to the Fiber Direction at Room and Cryogenic Temperature,' Composites Part A, Vol. 31, 2000, pp. 173-179 https://doi.org/10.1016/S1359-835X(99)00060-3
  12. C. C. Chamis, 'Simplified Composite Micromechanics Equations for Mechanical, Thermal and Moisture-related Properties,' Engineers' Guide to Composite Materials, ASM international, Materials Park, OH, 1987
  13. J. A. Kies, 'Maximum Strains in the Resin of Fiber Glass Composites,' U.S. Naval Research Laboratory Report, No. 5752, 1962
  14. M. S. Madhukar, and L. T. Drzal, 'Fiber-matrix Adhesion and its Effects on Composite Mechanical Properties: II. Longitudinal$(0^{\circ})$ and Transverse$(90^{\circ})$ Tensile and Flexural Behaviour of Graphite/epoxy Composites,' Journal of Composite Material, Vol. 25, 1991, pp. 958-991 https://doi.org/10.1177/002199839102500802