A5 % Gadget A=l A3 NERE ¢

A2 - A
Implementation of Development Environment for Intelligent Gadget System

Gab Joong Jeong* - Changseok Bae**

2 oTE FESAY Y YESNTTES) ITAUNTSHNTISTILAIS| Astoz UYL,
[2006-S032-02, HAY Life Log 7|8} X|S& AMH|A 7|2 JHg

Q o

B =20 2%=¥ Gadget A 29 o] EA FH| Be =Fo|th X5 Y Gadget A| Ao A AbEE guj=

Ned $4 229 g5s Ade] 72 D FAe e =311 A5 F Gadget A2 g 75 &R 74
S0 s 2AL L B4 R 52 AYAY $F L /5 AT TES RAT HEL AP gt = A&
g9 311}l Gadget Al 2¥lo)] & /M58l EE QT E 753 54 THFL AR E 28 LFAAE AT A
o] &rhssth 28 F 48 SFAAE A5Y MARRA 28 A% YW= Gadget A2 ZH A%
Y AR 7S AL 2L 2F SAAAE A A2 AR A& sbsdtth B =M e 22
A58 YW T = Gadget Al 27 &8 NES A /NLEA 78 dgte 7|3

ABSTRACT

This paper describes the environment configuration for the development of an embedded gadget system and the architecture and operation
of Linux kemnel for embedded system applications, which is used for a gadget. It shows and analyzes the operations of Linux kernel to
investigate the functions and components for new intelligent embedded gadget systems. The requested functions and operations adaptable for
the new intelligent embedded system will be applicable to develop a new small size operating system that supports intelligent operations for
the embedded gadget system used for intelligent personal information services. We configure the environment of development for an
embedded gadget system and its application.

719
Intelligent Gadget System, Light-weighted Operating System, Personal Information Service

1. Introduction sensors, and WiFi devices. Those recent device technologies
can realize a networking environment for the era of post-PC
In recent years, computers and computing devices are which is represented by small device and mobile service. In
miniaturizing by the contribution of smart processors, such computing technology environment, the necessity of an
» A5t YA 2007. 7. 23
» SRS AATY

253 Gadget A|=€12 918 EEA 79

intelligent gadget device for a personalized information
service grows to support ubiquitous computing environment
in daily objects and daily human life. Therefore, most users
want to have personalized intelligent services from their
tangible daily objects. The intelligent environment will be
designed for more personalized information service
implemented in every daily gadget object [1}-[6].

For the intelligent environment in daily life, the daily
gadget object that we use in everywhere should have more
light-weight system software. With the minimum system
specification, the more intelligent and personalized
information service needs a lightly configured operating
system. So, we need to study the lightly configured
operating system for the smart and personalized information
service using daily gadget objects.

In this research, we survey the architecture and operation
of the real time Linux kernel, for embedded system
applications, which is used for an embedded gadget system.
We show and analyze the operations of the Linux kernel to
investigate the functions and components for new
light-weighted intelligent operating systems [7]-[13]. The
light-weighted OS kemel and intelligent gadget system
developed in this research is implemented and tested for a new
prototype gadget device which supports intelligent personal
information services. In this paper, we illustrate the
environment configuration for the development of an embedded
gadget system and its applications. The developed gadget
system uses TI DaVinei processor in which ARM926EI-S and
TMS320 DSP cores are integrated [14]-[16).

. OS KERNEL FOR EMBEDDED SYSTEM

Technology enhancement using computer was
concentrated on host computing by Unix and host programs
in 1970’s. In 1990’s, these technologies had been developed
for a centralized server for client-server technology to
provide solutions for requests. Recently, the World Wide
Web technology has greatly enhanced these client-server
technologies. But these technologies are developed by the

base of the host computer. These technologies based on host

computing have being developed as network computing. In
the environment of network computing, there is a need for
post-PC intelligent embedded system which provides
information service for personal request. Therefore, the
development of a smart light-weighted operating system is
needed for the intelligent embedded gadget system which
provides information service for each individual person.

The kernel of operating system for an embedded system
is a main part for developing the intelligent gadget system. It
is classified by micro kemel and monolithic kernel. The
micro kernel has only minimal functionality like QNX, and
MACH operating systems. It minimizes the functions of
kernel, and supports simple scheduler and inter-process
communication. The monolithic kemel has most services for
the kernel functions of operating system. It controls every
running program, and manages files and data. Linux and
Unix operating systems correspond to the latter case. Linux
operating system includes the most functions for operating
system. Fig, 1 shows the structure of the Linux system.

Linux system consists of kernel and process modes. The
CPU operation mode for running the kernel is called kernel
mode and the operation mode for running processes is called
user mode. Processes for data exchange operation between
process and /O device, and for operations followed by
functions in kernel have to be executed in kernel mode. So,
the operating system has to be managed by switching the
modes between kernel mode and user mode.

/7 i \
- Inter Proce
Vittual File System [<C==)| Process Scheduler [0 oo ReRs
Network Intertace

a1, 2lsA AHE 7=
Fig. 1 Structure of Linux kernel.

Linux has the process scheduler module which is one of
the important functions in the kernel. It schedules each
process using a method of round-robin, etc. It supports
inter-process data exchange with the inter-process

1529

FEZHFY B EANTE =2X AW A8E

communication module. It provides huge data storage and
recovery functions by using the virtual file system module. It
supports available memory allocation and data loading
functions for each process by wusing the memory
management module. It supports also network functions like
Ethemnet with the network interface module.

1. ANALYSIS OF LINUX KERNEL

Linux is representative monolithic operating system
kerrel. The kernel source includes most services that an
operating system needs. Fig. 2 shows the directory structure
of Linux kernel.

The "Documentation’ directory includes various text files
for kernel documents. The ’kemel’ directory has main
functions for the kemel. It includes signal processing
routine, time management routine, and system calls which
treat processes like fork() and exit() as well as hardware
independent scheduler. The ’ipc’ directory provides
semaphore for inter-process communication, message
que:le, and shared memory functions. The ’lib’ directory has
library functions for kernel, which is implemented in C
application programs are
implemented in separate files for each application. Linux

language. Libraries for
provides the special characteristic function of module
loading. The object files for kemel modules are managed in
the “modules’ directory. The ’scripts’ directory includes
various script files for building the kernel.

Cxeme) (e) (T) (roues)

séripts

=

@:umemalm {block]
o= (oo) linux -
alpka 4
Can Y/ (om] Loat) “
{metk inchide :‘
Cmics ‘ (oo)
Cop: cot? Cobos)
(spaze oxt ‘ =2
1386 Kol 1y) fiofs ouns)
Ganemy) |2 oo G {ieo)

a8 2 drjd gz 7=
Fig. 2 Kernel directory structure.

x
N
)

video

1530

The "arch’ directory has sub-directoties for each CPU.
Each sub-directory has source files for handling each
different target CPU. When developing a kemel for a
specific CPU, it needs to modify the source files in this
directory. The ’arch/processor-name/kernel’ directory
includes trap processing, interrupt processing, context
switching, device configuration, and initialization routines.
The "arch/processor-name/mm’ directory includes processor
dependent routines for the handling routines of memory
management. The ’arch/processor-namejftools’ directory
generates constants for the kemel. The ’archyprocessor-
name/mach-board-name’ directory includes source files for
a specific SoC and a target board. It supports memory map
configuration for the target board, interrupt controller
management for the target SoC, interrupt handling routine,
USB device driver, LED controller, PCI interface driver, etc.

The "arch/processor-namefboot’ directory has bootstrapping

“source files before running kernel. It is used for the location

of a kemnel binary image file after the recompilation of the
kernel source.

The *fs’ directory has the source files for a virtual file
system and file systems supported by Linux. System call
handling routines for the virtual file system are implemented
in this directory. It has also special file system directories for
ext2, ext3, ramfs, jffs2, nfs, msdos, etc. The directory, ’mm’
has source files for the virtual memory management which
is independent of hardware, like paging and swapping. The
*init’ is a directory which has hardware independent kernel
initialization routine. It has ’main.c’ file where the
start_kernel() function is implemented.

There is the directory, 'include’ which has header files for
the kernel. The header information provides hardware
independent files for the general use of Linux, and specific
header files for the specific SoC and the specific target
board. The hardware independent header files are stored in
the directories, ’includeflinux’ and ’include/net’, and the
hardware dependent header files are stored in the directory,
’includefasm-target-processor-name’. It is used for
rebuilding the kernel as the name of "includefasm’. It is used
by the symbolic link name of ’includefasm’ when the kernel
is built. Also, this directory provides header files which are

2159 Gadget Al 288 ¢ ML 74

used for the specific SoC and the target development board.

Lastly, there is the "drivers’ directory which has source
files for the most input and output device driver programs.
Linux device drivers have been implemented in separate
sub-directories for character, block, network interface,
sound, and video drivers. So, the development of device
drivers is performed in the sub-directories of the ’drivers’
directory. The ’drivers/char’ directory has many character
device driver source files for keyboard, mouse, etc. The
*drivers/block’ directory has block device drivers. The block
devices are large size data communication devices like a
hard disk and a CD-ROM. The ’drivers/net’ directory has
device driver programs for networking devices with other
host computers like Ethernet, wireless LAN, etc. The
*drivers/pci’ directory provides the PCI bus control driver
program. The *driversfusb’ directory has driver programs for
the USB bus controller, and there are ’driver/sound’
directory for audio sound interface driver program,
*drivers/video/ directory for frame buffer driver program,
and ’driversfserial’ directory for the serial UART driver
program.

Iv. ENVIRONMENT CONFIGURATION

We configure an efficient environment for the
development of an embedded gadget system. We illustrate
the configuration of the development environment in Fig. 3.
First of all, a main host computer is connected to the general
purpose test board which has embedded the target CPU. OS
platform for the development host is previously installed in
the host computer. As an OS platform, we have selected
Linux that has the greatest potential for the development of
various embedded gadget systems.

The main host computer manipulates the general purpose
test board as a root user via serial terminal connected with
COM port by using the cress-compiling tool chain. The
general purpose test bed can operates with the recompiled
kemel as a stand alone embedded computer. It
communicates with the main host computer through the

wired network file system. The development of various

functions for kernel and application software which can be
useful in the gadget system can be performed in the main
host computer and it can be tested on the general purpose test
bed. Source program coding, cross-compiling and
downloading of binary file are performed as a non-root user
on the host computer, and the operation test of the developed
binary files is performed as root user on the general purpose
test bed.

/ \\\“\

W M
WiFi Interface Test Board NFS and Serial 7
/\ interface ’
/ Gadget System | <> Designer ——"|Main Host Computer
/ ~ >\
\)

Wireless NFS and / NFS interface

Serial interface
a8 3 A %‘&F?é 74
Fig. 3 Configuration of the development environment.

After the development of an application in the general
purpose test bed, we need to move the source files to the
secondary host computer through the wired NFS. The
secondary host computer is connected to the target gadget
system which is the goal of the development project. It also
has Linux platform for the host OS and manipulates the
target gadget system as a root user via serial terminal. Source
and the
downloading of binary file are performed as a non-root user,

program modification, cross-compilation,
and the operation test of the developed binary files is
performed as root user on the target gadget system. Using
the separated dual host computers reduces many mistakes
for the development of an application and makes easy to
recover the environment of the target gadget system. The
target gadget system can be operated by the standalone
mode and it can communicate with the secondary host
computer through the wireless network file system. We use
the wireless USB WiFi interface for the gadget system to
communicate with the host computer, since the target gadget

1531

PR AR TG =ER] AL AL

system we developed has no wired network interface.

To test an application for video and audio, we use the
wireless LAN 802.11.g/54Mbps between the target gadget
system and the general purpose test bed. On the target gadget
system, we encode video and audio data in real time from an
NTSC/PAL micro video camera and send the encoded data
via the wireless LAN to the general purpose test bed. On the
general purpose test bed, we decode and play in real time the
video and audio data which are transferred from the target
gadget system. Also, we can transfer the video and audio
data between the gadget systems. The exchange of data
communication can operate between client-server
computers through the public network for an intelligent
service of personal information.

Fig. 4 shows the general purpose embedded test bed. Fig.
5 shows the target gadget system boards we developed. Fig.
6 shows the operating target gadget system that four gadget
boards are stacked. There are main processor module, power
module, videofaudio module, and interface module. An USB
WiFi stick has been installed on the most upper interface
gadget module. It provides 802.11g/54Mbps network
interface.

Currently, we are developing GPS applications,
videofaudio applications, LCD screen applications, and
micro-kernel applications for a new smaller gadget. The
smaller gadget application system can be embedded in daily
objects which provide new information oriented personal

services.

a2 4 HE Udc|E HAERE
Fig. 4 General purpose embedded test board.

1532

a8l 5 dE JiH 28
Fig. 5 Embedded gadget modules.

a8l 6. USB WIFiEM$ =& & 71 =&
Fig. 6 Stacked gadget modules with USB WiFi
device.

V. CONCLUSIONS

In this research, we have analyzed the architecture and
the operation method of Linux which is one of the
generalized operating system for an intelligent embedded
system. We have illustrated an efficient environment
configuration for the development of an embedded gadget
system, The environment configuration has been used for
the development of an intelligent gadget system. The gadget
system under development .has used an ARMO9EI-S
processor core and Linux kemel 2.6.10 as a real-time
operating system.

In the future, we will enhance and minimize the
developed gadget system for implementing in daily objects,

A% Gadget A 29 S AT ALEA 7

and we will support applications to provide new information
services based on personal needs.

REFERENCES

[1] Kjell, B., “The rise of embedded processing and the
opportunity for open standards,” Technology and
Society Magazine, IEEE, vol. 23, no. 2, pp. 4 - 5,
Summer 2004.

[21 Kameas, A., Bellis, S., Mavrommati, I, Delaney, K.,
Colley, M., and Pounds-Cornish, A., "An architecture
that treats everyday objects as communicating tangible
components,” Proc. Ist Int. Conf. on Pervasive
Computing and Communications 2003 (PerCom
2003), vol. 2, pp. 115 - 122, March 2003.

[3] Scholten, H., Jansen, P., and Hop, L., “Communicating
personal gadgets [PAN real-time streaming media
protocoll,” TEEE 1st CCNC 2004, pp. 630 - 632, Jan.
2004.

[4] Kishino, Y., Terada, T., and Nishio, S., “Ubiquitous
Gadgets for Constructing Flexible Ubiquitous
Services,” Proc. 7th Int. Conf. Mobile Data
Management, pp. 100-100, May. 2006.

[5] Lewis, T., “Information appliances: gadget Netopia,”
IEEE, Computer, vol. 31, no. 1, pp. 59 - 68, Jan. 1998.

[6] Acre, I, “The rise of the gadgets,” Security & Privacy
Magazine, IEEE, vol.1, no. 5, pp.78-81, Sep. 2003

[7] Craig Hollabaugh, Embedded Linux: Hardware,
Software, and Interfacing, Addison-Wesley, Mar.
2002.

[8] Karim Yaghmour, Building Embedded Linux Systems,
Sebastol, CA: O’Reilly & Associates, Inc. 2003,

19] Love and Robert, Linux Kemel Development,
Indianapolis: Sams Publishing, 2004.

[10] Jensen, D., “Adventures in embedded development,”
IEEE Software, vol. 11, no. 6, pp. 116 - 118, Nov.
199%4.

[11] Nakajima, T., Sugaya, M., and Oikawa, S., “Operating
systems for building robust embedded systems,” Proc.
10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems 2005(WORDS 2005),
pp- 211 - 218, Feb. 2005

[12] Bolosky, W.J., Draves, R.P., Fitzgerald, R.P., Fraser,
C.W., Jones, M.B., Knoblock, T.B., and Rashid, R,
“Operating system directions for the next Millennium,”
Proc. 6th Workshop on Hot Topics in Operating
Systems, pp. 106 - 110, May. 1997.

[13] Steiger, C., Walder, H., and Platzner, M., “Operating
systems for reconfigurable embedded platforms:
online scheduling of real-time tasks,” IEEE
Transactions on Computers, vol. 53, no. 11, pp.
1393-1407, Nov. 2004

[14] Steve Furber, ARM system-on-chip architecture second
edition, Addison-Wesley, 2000.

[15] TI, TMS320DM6446, SPRS283D-DEC. 2005-REV.
SEPT. 2006, Texas Instruments, Available:
http:/fwww.ti.com

[16] Zhihui Xiong, Maojun Zhang, Sikun Li, Shaohua Liu,
and Yafei Chao, "Virtual embedded operating system
for hardware/software co-design,” Proc. 6th Int. Conf.
On ASIC 2005(ASICON 2005), vol. 2, pp. 858-861,
Oct. 2005.

1533

ST ARYARTAES =R Al AE

PGl

M 2t =(Gab Joong Jeong)

ft

19873 A B 83 A 243 83 T AL
1989 A% o &k o 3t W AE o
T AL

1999 A A2t ol el AR o B oA}

19891 19 ~ 199914 3Y LG = BJA+

19994 49 ~2001d 2¥ ETRI MY A79Y

20014 39 ~ @A) AFThehE 2 TS5

xAA R = YN AR 44, ARH 1
A%, AHE) A, A2 2913, VLSL, SoC

v & A(Changseok Bae)

1987'd ZE L AAF &2

T
1989 7B o5 oot 9 AR 8kt
(A

2003 1Al 8 o3t 9 171 AR o2} (F ek
1989 ~ & A ETRI A FEHAZEo]ldF4 A
Eil
w@AE}: A JANE Az, ewvel a4,
A 5d 74, Bo| T2 T A AH

1534

