Fuzzy (r,s)-semi-preopen sets and fuzzy (r,s)-semi-precontinuous maps

Seok Jong Lee and Jin Tae Kim

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

Abstract

In this paper, we introduce the concepts of fuzzy (r,s)-semi-preopen sets and fuzzy (r,s)-semi-precontinuous mappings on intuitionistic fuzzy topological spaces in Šostak's sense. The relations among fuzzy (r,s)-semi-continuous, fuzzy (r,s)-precontinuous, and fuzzy (r,s)-semi-precontinuous mappings are discussed. The concepts of fuzzy (r,s)-semi-preinterior, fuzzy (r,s)-semi-preclosure, fuzzy (r,s)-semi-preneighborhood, and fuzzy (r,s)-quasi-semi-preneighborhood are given. Using these concepts, the characterization for the fuzzy (r,s)-semi-precontinuous mapping is obtained. Also, we introduce the notions of fuzzy (r,s)-semi-preopen and fuzzy (r,s)-semi-preclosed mappings on intuitionistic fuzzy topological spaces in Šostak's sense, and then we investigate some of their characteristic properties.

Key words: fuzzy (r, s)-semi-preopen set, fuzzy (r, s)-semi-precontinuous mapping, fuzzy (r, s)-semi-preopen mapping, fuzzy (r, s)-semi-preclosed mapping

1. Introduction

The concept of fuzzy topological spaces was introduced by Chang [2]. These spaces and its generalizations are later studied by several authors, one of which, developed by Šostak [14], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay and his colleagues [3], and by Ramadan [13].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Çoker and his colleagues [4, 7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Çoker and Demirci [6] defined intuitionistic fuzzy topological spaces in Šostak's sense as a generalization of smooth topological spaces and intuitionistic fuzzy topological spaces. Thakur and Singh [15] introduced the concepts of fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings on Chang's fuzzy topological spaces.

In this paper, we introduce the concepts of fuzzy (r,s)-semi-preopen sets and fuzzy (r,s)-semi-precontinuous mappings on intuitionistic fuzzy topological spaces in Šostak's sense. The relations among fuzzy (r,s)-semi-continuous, fuzzy (r,s)-precontinuous, and fuzzy (r,s)-semi-precontinuous mappings are discussed. The concepts of fuzzy (r,s)-semi-preinterior, fuzzy (r,s)-

semi-preclosure, fuzzy (r,s)-semi-preneighborhood, and fuzzy (r,s)-quasi-semi-preneighborhood are given. Using these concepts, the characterization for the fuzzy (r,s)-semi-precontinuous mapping is obtained. Also, we introduce the notions of fuzzy (r,s)-semi-preopen and fuzzy (r,s)-semi-preclosed mappings on intuitionistic fuzzy topological spaces in Šostak's sense, and then we investigate some of their characteristic properties.

2. Preliminaries

For the nonstandard definitions and notations we refer to [9, 10].

Definition 2.1. ([6]) Let X be a nonempty set. An *intuitionistic fuzzy topology in Šostak's sense*(SoIFT for short) $\mathcal{T} = (\mathcal{T}_1, \mathcal{T}_2)$ on X is a mapping $\mathcal{T} : I(X) \to I \otimes I$ which satisfies the following properties:

- (1) $T_1(\underline{0}) = T_1(\underline{1}) = 1$ and $T_2(\underline{0}) = T_2(\underline{1}) = 0$.
- (2) $\mathcal{T}_1(A \cap B) \ge \mathcal{T}_1(A) \wedge \mathcal{T}_1(B)$ and $\mathcal{T}_2(A \cap B) \le \mathcal{T}_2(A) \vee \mathcal{T}_2(B)$.
- (3) $\mathcal{T}_1(\bigcup A_i) \ge \bigwedge \mathcal{T}_1(A_i)$ and $\mathcal{T}_2(\bigcup A_i) \le \bigvee \mathcal{T}_2(A_i)$.

The $(X, \mathcal{T}) = (X, \mathcal{T}_1, \mathcal{T}_2)$ is said to be an intuitionistic fuzzy topological space in Šostak's sense(SoIFTS for short). Also, we call $\mathcal{T}_1(A)$ a gradation of openness of A and $\mathcal{T}_2(A)$ a gradation of nonopenness of A.

접수일자: 2007년 4월 1일 완료일자: 2007년 5월 29일 **Definition 2.2.** ([5, 8]) Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS and $(r, s) \in I \otimes I$. Then

- (1) an intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X is said to be *quasi-coincident* with the intuitionistic fuzzy set A in X, denoted by $x_{(\alpha,\beta)}qA$, if and only if $\mu_A(x)>\beta$ or $\gamma_A(x)<\alpha$.
- (2) two intuitionistic fuzzy sets A and B in X are said to be *quasi-coincident*, denoted by AqB, if and only if there exists an element $x \in X$ such that $\mu_A(x) > \gamma_B(x)$ or $\gamma_A(x) < \mu_B(x)$.

The word 'not quasi-coincident' will be abbreviated as $\tilde{\textbf{q}}.$

Definition 2.3. ([12]) Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then A is said to be

- (1) fuzzy (r, s)-preopen if $A \subseteq \operatorname{int}(\operatorname{cl}(A, r, s), r, s)$,
- (2) fuzzy (r, s)-preclosed if $cl(int(A, r, s), r, s) \subseteq A$.

Definition 2.4. ([12]) Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS. For each $(r,s) \in I \otimes I$ and for each $A \in I(X)$, the *fuzzy* (r,s)-preinterior is defined by $\operatorname{pint}(A,r,s)$

$$= \{ \{ B \in I(X) \mid B \subseteq A, B \text{ is fuzzy } (r, s) \text{-preopen} \}$$

and the fuzzy (r, s)-preclosure is defined by pcl(A, r, s)

$$= \bigcap \{B \in I(X) \mid A \subseteq B, \ B \text{ is fuzzy } (r, s)\text{-preclosed}\}.$$

Definition 2.5. ([11, 12]) Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r, s) \in I \otimes I$. Then f is called

- (1) a fuzzy (r, s)-semiclosed mapping if f(A) is a fuzzy (r, s)-semiclosed set in Y for each fuzzy (r, s)-closed set A in X,
- (2) a fuzzy (r, s)-precontinuous mapping if $f^{-1}(B)$ is a fuzzy (r, s)-preopen set in X for each fuzzy (r, s)-open set B in Y,
- (3) a fuzzy (r,s)-preopen mapping if f(A) is a fuzzy (r,s)-preopen set in Y for each fuzzy (r,s)-open set A in X,
- (4) a fuzzy (r, s)-preclosed mapping if f(A) is a fuzzy (r, s)-preclosed set in Y for each fuzzy (r, s)-closed set A in X.

Definition 2.6. ([10]) Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then an intuitionistic fuzzy set A in X is called

- (1) a fuzzy (r,s)-neighborhood of $x_{(\alpha,\beta)}$ if there is a fuzzy (r,s)-open set B in X such that $x_{(\alpha,\beta)} \in B \subseteq A$.
- (2) a fuzzy (r,s)-semineighborhood of $x_{(\alpha,\beta)}$ if there is a fuzzy (r,s)-semiopen set B in X such that $x_{(\alpha,\beta)} \in B \subseteq A$.

3. Fuzzy (r, s)-semi-preopen sets and fuzzy (r, s)-semi-precontinuous mappings

Now, we define the notions of fuzzy (r,s)-semi-preopen sets and fuzzy (r,s)-semi-precontinuous mappings on intuitionistic fuzzy topological spaces in Šostak's sense, and then we investigate some of their properties.

Theorem 3.1. Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then A is a fuzzy (r, s)-preopen set in X if and only if there is a fuzzy (r, s)-open set B in X such that $A \subseteq B \subseteq \operatorname{cl}(A, r, s)$.

Proof. Let A be a fuzzy (r,s)-preopen set in X. Then $A \subseteq \operatorname{int}(\operatorname{cl}(A,r,s),r,s)$. Put $B = \operatorname{int}(\operatorname{cl}(A,r,s),r,s)$. Then B is a fuzzy (r,s)-open set in X and $A \subseteq B \subseteq \operatorname{cl}(A,r,s)$. Conversely, let B be a fuzzy (r,s)-open set in X such that $A \subseteq B \subseteq \operatorname{cl}(A,r,s)$. Then $A \subseteq B = \operatorname{int}(B) \subseteq \operatorname{int}(\operatorname{cl}(A,r,s),r,s)$. Hence A is a fuzzy (r,s)-preopen set.

Definition 3.2. Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then A is called

- (1) a fuzzy (r,s)-semi-preopen set if there is a fuzzy (r,s)-preopen set B in X such that $B\subseteq A\subseteq \operatorname{cl}(B,r,s)$.
- (2) a fuzzy (r, s)-semi-preclosed set if there is a fuzzy (r, s)-preclosed set B in X such that $int(B, r, s) \subseteq A \subseteq B$.

Theorem 3.3. Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) A is a fuzzy (r, s)-semi-preopen set.
- (2) A^c is a fuzzy (r, s)-semi-preclosed set.

Proof. Straightforward.

Remark 3.4. It is clear that every fuzzy (r,s)-semiopen(resp. fuzzy (r,s)-semiclosed) set and every fuzzy (r,s)-preopen(resp. fuzzy (r,s)-preclosed) set is fuzzy (r,s)-semi-preopen(resp. fuzzy (r,s)-semi-preclosed) for each $(r,s) \in I \otimes I$. However, the following example shows that all of the converses need not be true.

Example 3.5. Let $X = \{x, y\}$ and let A_1, A_2, A_3 , and A_4 be intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0.2, 0.8), A_1(y) = (0.3, 0.5);$$

$$A_2(x) = (0.8, 0.1), \ A_2(y) = (0.8, 0.1);$$

$$A_3(x) = (0.5, 0.2), \ A_3(y) = (0.2, 0.5);$$

and

$$A_4(x) = (0.1, 0.9), \ A_4(y) = (0.2, 0.6).$$

Define $\mathcal{T}: I(X) \to I \otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly \mathcal{T} is a SoIFT on X. Since $A_2\subseteq \underline{1}=\inf(\operatorname{cl}(A_2,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3}),\ A_2$ is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen set and hence A_2 is fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen. But A_2 is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semiopen set, because $A_2\nsubseteq\operatorname{cl}(\inf(A_2,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=A_1^c$. Since $A_4\subseteq\operatorname{int}(\operatorname{cl}(A_4,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=A_1$, A_4 is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen set. Also, A_3 is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen set, because $A_4\subseteq A_3\subseteq\operatorname{cl}(A_4,\frac{1}{2},\frac{1}{3})=A_1^c$. But A_3 is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen set, because $A_3\nsubseteq\operatorname{int}(\operatorname{cl}(A_3,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=A_1$.

Theorem 3.6. Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then the following statements are true:

- (1) For each fuzzy (r, s)-semi-preopen set B in $X, B \subseteq A \subseteq \operatorname{cl}(B, r, s)$ implies that A is fuzzy (r, s)-semi-preopen in X.
- (2) For each fuzzy (r,s)-semi-preclosed set B in X, $\operatorname{int}(B,r,s)\subseteq A\subseteq B$ implies that A is fuzzy (r,s)-semi-preclosed in X.

Proof. (1) Let C be a fuzzy (r,s)-preopen set in X such that $C\subseteq B\subseteq \operatorname{cl}(C,r,s)$. Then clearly $C\subseteq A$ and $B\subseteq\operatorname{cl}(C,r,s)$ implies that $\operatorname{cl}(B,r,s)\subseteq\operatorname{cl}(C,r,s)$. Thus $C\subseteq A\subseteq\operatorname{cl}(B,r,s)\subseteq\operatorname{cl}(C,r,s)$. Hence A is a fuzzy (r,s)-semi-preopen set in X.

Theorem 3.7. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS and $(r, s) \in I \otimes I$.

- (1) If $\{A_i\}$ is a family of fuzzy (r, s)-semi-preopen sets in X, then $\bigcup A_i$ is fuzzy (r, s)-semi-preopen.
- (2) If $\{A_i\}$ is a family of fuzzy (r, s)-semi-preclosed sets in X, then $\bigcap A_i$ is fuzzy (r, s)-semi-preclosed.

Proof. (1) Let $\{A_i\}$ be a collection of fuzzy (r,s)-semi-preopen sets in X. Then for each i, there is a fuzzy (r,s)-preopen set B_i in X such that $B_i \subseteq A_i \subseteq \operatorname{cl}(B_i,r,s)$. So

$$\bigcup B_i \subseteq \bigcup A_i \subseteq \bigcup \operatorname{cl}(B_i, r, s) \subseteq \operatorname{cl}(\bigcup B_i, r, s)$$

and $\bigcup B_i$ is fuzzy (r, s)-preopen. Hence $\bigcup A_i$ is a fuzzy (r, s)-semi-preopen set.

(2) It follows from (1) using Theorem 3.3.
$$\Box$$

The following example shows that the intersection(resp. union) of two fuzzy (r,s)-semi-preopen(resp. fuzzy (r,s)-semi-preclosed) sets need not be a fuzzy (r,s)-semi-preopen(resp. fuzzy (r,s)-semi-preclosed) set for each $(r,s) \in I \otimes I$.

Example 3.8. Let $X = \{x, y\}$ and let A_1 and A_2 be intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0.1, 0.7), A_1(y) = (0.4, 0.3);$$

and

$$A_2(x) = (0.8, 0.1), A_2(y) = (0.2, 0.4).$$

Define $T: I(X) \to I \otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly T is a SoIFT on X. Since A_1 is fuzzy $(\frac{1}{2},\frac{1}{3})$ -open, A_1 is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen set. Since $A_2\subseteq\underline{1}=\operatorname{int}(\operatorname{cl}(A_2,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3}),\ A_2$ is fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen and hence A_2 is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen set. But $A_1\cap A_2$ is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen set in X, because there is no fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen set B in X such that $B\subseteq A_1\cap A_2\subseteq\operatorname{cl}(B,\frac{1}{2},\frac{1}{3})$.

Definition 3.9. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the fuzzy (r, s)-semi-preinterior is defined by

and the fuzzy (r, s)-semi-preclosure is defined by

$$\operatorname{spcl}(A,r,s) = \bigcap \{B \in I(X) \mid A \subseteq B, \\ B \text{ is fuzzy } (r,s)\text{-semi-preclosed}\}.$$

Obviously $\operatorname{spcl}(A,r,s)$ is the smallest fuzzy (r,s)-semi-preclosed set which contains A, and $\operatorname{spint}(A,r,s)$ is the greatest fuzzy (r,s)-semi-preopen set which is contained in A. Also, $\operatorname{spcl}(A,r,s)=A$ for any fuzzy (r,s)-semi-preclosed set A, and $\operatorname{spint}(A,r,s)=A$ for any fuzzy (r,s)-semi-preopen set A. Moreover, we have

$$\begin{array}{ll} \operatorname{int}(A,r,s) & \subseteq & \operatorname{pint}(A,r,s) \subseteq \operatorname{spint}(A,r,s) \subseteq A \\ & \subseteq & \operatorname{spcl}(A,r,s) \subseteq \operatorname{pcl}(A,r,s) \subseteq \operatorname{cl}(A,r,s). \end{array}$$

Also, we have the following results:

- (1) $\operatorname{spcl}(\underline{0}, r, s) = \underline{0}, \operatorname{spcl}(\underline{1}, r, s) = \underline{1}.$
- (2) $\operatorname{spcl}(A, r, s) \supset A$.
- (3) $\operatorname{spcl}(A \cup B, r, s) \supseteq \operatorname{spcl}(A, r, s) \cup \operatorname{spcl}(B, r, s)$.
- (4) $\operatorname{spcl}(\operatorname{spcl}(A, r, s), r, s) = \operatorname{spcl}(A, r, s)$.
- (5) spint(0, r, s) = 0, spint(1, r, s) = 1.
- (6) $\operatorname{spint}(A, r, s) \subseteq A$.
- (7) $\operatorname{spint}(A \cap B, r, s) \subseteq \operatorname{spint}(A, r, s) \cap \operatorname{spint}(B, r, s)$.
- (8) $\operatorname{spint}(\operatorname{spint}(A, r, s), r, s) = \operatorname{spint}(A, r, s).$

Definition 3.10. Let A be an intuitionistic fuzzy set and $x_{(\alpha,\beta)}$ an intuitionistic fuzzy point in a SoIFTS $(X,\mathcal{T}_1,\mathcal{T}_2)$ and $(r,s)\in I\otimes I$. Then A is called

- (1) a fuzzy (r,s)-semi-preneighborhood of $x_{(\alpha,\beta)}$ if there is a fuzzy (r,s)-semi-preopen set B in X such that $x_{(\alpha,\beta)} \in B \subseteq A$.
- (2) a fuzzy (r,s)-quasi-semi-preneighborhood of $x_{(\alpha,\beta)}$ if there is a fuzzy (r,s)-semi-preopen set B in X such that $x_{(\alpha,\beta)} \neq B \subseteq A$.

Theorem 3.11. Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r,s) \in I \otimes I$. Then A is fuzzy (r,s)-semi-preopen if and only if A is a fuzzy (r,s)-semi-preneighborhood of $x_{(\alpha,\beta)}$ for each intuitionistic fuzzy point $x_{(\alpha,\beta)} \in A$.

Proof. Straightforward.

Theorem 3.12. Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then an intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is contained in $\mathrm{spcl}(A,r,s)$ if and only if every fuzzy (r,s)-quasi-semi-preneighborhood of $x_{(\alpha,\beta)}$ is quasi-coincident with A.

Proof. Suppose $x_{(\alpha,\beta)} \in \operatorname{spcl}(A,r,s)$ and there exists a fuzzy (r,s)-quasi-semi-preneighborhood B of $x_{(\alpha,\beta)}$ such that $A\tilde{q}B$. Then there is a fuzzy (r,s)-semi-preopen set C in X such that $x_{(\alpha,\beta)} \neq C \subseteq B$, which shows that $A\tilde{q}C$ and hence $A \subseteq C^c$. Since C^c is fuzzy (r,s)-semi-preclosed in X, $\operatorname{spcl}(A,r,s) \subseteq C^c$. Thus $x_{(\alpha,\beta)} \in C^c$. But $x_{(\alpha,\beta)} \notin C^c$, because $x_{(\alpha,\beta)} \neq C$. This is a contradiction.

Conversely, suppose every fuzzy (r,s)-quasi-semi-preneighborhood of $x_{(\alpha,\beta)}$ is quasi-coincident with A. If $x_{(\alpha,\beta)} \notin \operatorname{spcl}(A,r,s)$, then there is a fuzzy (r,s)-semi-preclosed set B in X such that $A \subseteq B$ and $x_{(\alpha,\beta)} \notin B$. So B^c is a fuzzy (r,s)-semi-preopen set in X such that $x_{(\alpha,\beta)} q B^c$ and $B^c \tilde{q} A$. This is a contradiction. \square

Definition 3.13. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then f is called a fuzzy (r,s)-semi-precontinuous mapping if $f^{-1}(B)$ is a fuzzy (r,s)-semi-preopen set in X for each fuzzy (r,s)-open set B in Y.

Remark 3.14. It is clear that every fuzzy (r,s)-semicontinuous and every fuzzy (r,s)-precontinuous mapping is fuzzy (r,s)-semi-precontinuous for each $(r,s) \in I \otimes I$. However, the following examples show that all of the converses need not be true.

Example 3.15. Let $X = \{x, y\}$ and let A_1 , A_2 and B be intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0.2, 0.7), \ A_1(y) = (0.3, 0.5);$$

$$A_2(x) = (0.7, 0.2), A_2(y) = (0.7, 0.2);$$

and

$$B(x) = (0.7, 0.2), \ B(y) = (0.6, 0.3).$$

Define $\mathcal{T}: I(X) \to I \otimes I$ and $\mathcal{U}: I(X) \to I \otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $\mathcal T$ and $\mathcal U$ are SoIFTs on X. Consider a mapping $f:(X,\mathcal T)\to (X,\mathcal U)$ defined by f(x)=x and f(y)=y. Then it is easy to see that B is a fuzzy $(\frac12,\frac13)$ -preopen set in $(X,\mathcal T)$ and $B\subseteq f^{-1}(A_2)=A_2\subseteq \operatorname{cl}(B,\frac12,\frac13)=\underline1$. So $f^{-1}(A_2)=A_2$ is a fuzzy $(\frac12,\frac13)$ -semi-preopen set in $(X,\mathcal T)$ and hence f is a fuzzy $(\frac12,\frac13)$ -semi-precontinuous mapping. But $f^{-1}(A_2)=A_2$ is not a fuzzy $(\frac12,\frac13)$ -semiopen set in $(X,\mathcal T)$, because $A_2\not\subseteq \operatorname{cl}(\operatorname{int}(A_2,\frac12,\frac13),\frac12,\frac13)=A_1^c$ in $(X,\mathcal T)$. Hence f is not fuzzy $(\frac12,\frac13)$ -semicontinuous.

Example 3.16. Let $X = \{x, y\}$ and let A_1 , A_2 and B be intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0.2, 0.5), \ A_1(y) = (0.3, 0.3);$$

$$A_2(x) = (0.5, 0.3), \ A_2(y) = (0.3, 0.4);$$

and

$$B(x) = (0.2, 0.6), B(y) = (0.2, 0.4).$$

Define $\mathcal{T}: I(X) \to I \otimes I$ and $\mathcal{U}: I(X) \to I \otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly \mathcal{T} and \mathcal{U} are SoIFTs on X. Consider a mapping $f:(X,\mathcal{T})\to (X,\mathcal{U})$ defined by f(x)=x, f(y)=y. Then it is easy to see that B is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen set in (X,\mathcal{T}) and $B\subseteq f^{-1}(A_2)=A_2\subseteq \mathrm{cl}(B,\frac{1}{2},\frac{1}{3})=A_1^c$. So $f^{-1}(A_2)=A_2$ is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen set in (X,\mathcal{T}) and hence f is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-precontinuous mapping. But $f^{-1}(A_2)=A_2$ is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen set in (X,\mathcal{T}) , because $A_2\nsubseteq \mathrm{int}(\mathrm{cl}(A_2,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=A_1$ in (X,\mathcal{T}) . Hence f is not fuzzy $(\frac{1}{2},\frac{1}{3})$ -precontinuous.

Theorem 3.17. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is fuzzy (r, s)-semi-precontinuous.
- (2) For each fuzzy (r, s)-closed set B in Y, $f^{-1}(B)$ is a fuzzy (r, s)-semi-preclosed set in X.
- (3) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-open set B in Y such that $f(x_{(\alpha,\beta)}) \in B$, there is a fuzzy (r,s)-semi-preopen set A in X such that $x_{(\alpha,\beta)} \in A$ and $f(A) \subseteq B$.
- (4) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-neighborhood B of $f(x_{(\alpha,\beta)})$, $f^{-1}(B)$ is a fuzzy (r,s)-semi-preneighborhood of $x_{(\alpha,\beta)}$.
- (5) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-neighborhood B of $f(x_{(\alpha,\beta)})$, there is a fuzzy (r,s)-semi-preneighborhood A of $x_{(\alpha,\beta)}$ such that $f(A) \subseteq B$.
- (6) For each intuitionistic fuzzy set B in Y, $\operatorname{spcl}(f^{-1}(B), r, s) \subseteq f^{-1}(\operatorname{cl}(B, r, s))$.
- (7) For each intuitionistic fuzzy set A in X, $f(\operatorname{spcl}(A,r,s)) \subseteq \operatorname{cl}(f(A),r,s)$.
- (8) For each intuitionistic fuzzy set B in Y, $f^{-1}(\operatorname{int}(B,r,s)) \subseteq \operatorname{spint}(f^{-1}(B),r,s)$.

Proof. (1) \Leftrightarrow (2) It is obvious.

- $(1)\Rightarrow (3)$ Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-open set in Y such that $f(x_{(\alpha,\beta)})\in B$. Then $x_{(\alpha,\beta)}\in f^{-1}(B)$. Put $A=f^{-1}(B)$. Then by (1), A is a fuzzy (r,s)-semi-preopen set in X such that $x_{(\alpha,\beta)}\in A$ and $f(A)=f(f^{-1}(B))\subseteq B$.
- $\begin{array}{l} (3) \Rightarrow (1) \text{ Let } B \text{ be a fuzzy } (r,s)\text{-open set in } Y \text{ and } \\ x_{(\alpha,\beta)} \in f^{-1}(B). \text{ Then } f(x_{(\alpha,\beta)}) \in B. \text{ By (3), there is a fuzzy } (r,s)\text{-semi-preopen set } A_{x_{(\alpha,\beta)}} \text{ in } X \text{ such that } \\ x_{(\alpha,\beta)} \in A_{x_{(\alpha,\beta)}} \text{ and } f(A_{x_{(\alpha,\beta)}}) \subseteq B. \text{ Thus } x_{(\alpha,\beta)} \in A_{x_{(\alpha,\beta)}} \subseteq f^{-1}(f(A_{x_{(\alpha,\beta)}})) \subseteq f^{-1}(B). \text{ So we have} \end{array}$

$$f^{-1}(B) = \bigcup \{x_{(\alpha,\beta)} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\}$$

$$\subseteq \bigcup \{A_{x_{(\alpha,\beta)}} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\} \subseteq f^{-1}(B).$$

Thus $f^{-1}(B) = \bigcup \{A_{x_{(\alpha,\beta)}} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\}$ and hence $f^{-1}(B)$ is fuzzy (r,s)-semi-preopen in X. Therefore f is a fuzzy (r,s)-semi-precontinuous mapping.

 $(1)\Rightarrow (4)$ Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-neighborhood of $f(x_{(\alpha,\beta)})$. Then there is a fuzzy (r,s)-open set C in Y such that $f(x_{(\alpha,\beta)})\in C\subseteq B$ and hence $x_{(\alpha,\beta)}\in f^{-1}(C)\subseteq f^{-1}(B)$. Since f is fuzzy (r,s)-semi-precontinuous, $f^{-1}(C)$ is a fuzzy (r,s)-semi-preopen set in X. Thus $f^{-1}(B)$ is a fuzzy (r,s)-semi-preneighborhood of $x_{(\alpha,\beta)}$.

 $(4)\Rightarrow (5)$ Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-neighborhood of $f(x_{(\alpha,\beta)})$. By (4), $A=f^{-1}(B)$ is a fuzzy (r,s)-semi-preneighborhood of $x_{(\alpha,\beta)}$ and $f(A)=f(f^{-1}(B))\subseteq B$.

 $(5)\Rightarrow (3)$ Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-open set in Y such that $f(x_{(\alpha,\beta)})\in B$. Then B is a fuzzy (r,s)-neighborhood of $f(x_{(\alpha,\beta)})$. By (5), there is a fuzzy (r,s)-semi-preneighborhood A of $x_{(\alpha,\beta)}$ in X such that $x_{(\alpha,\beta)}\in A$ and $f(A)\subseteq B$. Thus there is a fuzzy (r,s)-semi-preopen set C in X such that $x_{(\alpha,\beta)}\in C\subseteq A$ and hence $f(C)\subseteq f(A)\subseteq B$.

(2) \Rightarrow (6) Let B be an intuitionistic fuzzy set in Y. Then $\operatorname{cl}(B,r,s)$ is a fuzzy (r,s)-closed set in Y and $f^{-1}(B)\subseteq f^{-1}(\operatorname{cl}(B,r,s))$. By (2), $f^{-1}(\operatorname{cl}(B,r,s))$ is a fuzzy (r,s)-semi-preclosed set in X. Hence

$$\operatorname{spcl}(f^{-1}(B),r,s)\subseteq f^{-1}(\operatorname{cl}(B,r,s)).$$

 $(6) \Rightarrow (2)$ Let B be a fuzzy (r, s)-closed set in Y. Then by (6),

$$\begin{split} f^{-1}(B) \subseteq \operatorname{spcl}(f^{-1}(B), r, s) &\subseteq f^{-1}(\operatorname{cl}(B, r, s)) \\ &= f^{-1}(B). \end{split}$$

Hence $f^{-1}(B) = \operatorname{spcl}(f^{-1}(B), r, s)$. Thus $f^{-1}(B)$ is a fuzzy (r, s)-semi-preclosed set in X.

(6) \Rightarrow (7) Let A be an intuitionistic fuzzy set in X. Then f(A) is an intuitionistic fuzzy set in Y. By (6),

$$\operatorname{spcl}(A, r, s) \subseteq \operatorname{spcl}(f^{-1}(f(A)), r, s)$$
$$\subseteq f^{-1}(\operatorname{cl}(f(A), r, s)).$$

Thus $f(\operatorname{spcl}(A, r, s)) \subseteq \operatorname{cl}(f(A), r, s)$.

 $(7) \Rightarrow (6)$ Let B be an intuitionistic fuzzy set in Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set in X. By (7),

$$\begin{array}{lcl} f(\operatorname{spcl}(f^{-1}(B),r,s)) & \subseteq & \operatorname{cl}(f(f^{-1}(B)),r,s) \\ & \subseteq & \operatorname{cl}(B,r,s). \end{array}$$

4Hence

$$\begin{array}{lcl} \operatorname{spcl}(f^{-1}(B),r,s) & \subseteq & f^{-1}(f(\operatorname{spcl}(f^{-1}(B),r,s))) \\ & \subseteq & f^{-1}(\operatorname{cl}(B,r,s)). \end{array}$$

 $(1)\Rightarrow (8)$ Let B be an intuitionistic fuzzy set in Y. Then $\operatorname{int}(B,r,s)$ is a fuzzy (r,s)-open set in Y. Since f is fuzzy (r,s)-semi-precontinuous, $f^{-1}(\operatorname{int}(B,r,s))$ is a fuzzy (r,s)-semi-preopen set in X. Thus

$$f^{-1}(\operatorname{int}(B, r, s)) \subseteq \operatorname{spint}(f^{-1}(B), r, s).$$

 $(8) \Rightarrow (1)$ Let B be a fuzzy (r, s)-open set in Y. By (8),

$$\begin{split} f^{-1}(B) &= f^{-1}(\operatorname{int}(B,r,s)) &\subseteq & \operatorname{spint}(f^{-1}(B),r,s) \\ &\subseteq & f^{-1}(B). \end{split}$$

Thus $f^{-1}(B) = \operatorname{spint}(f^{-1}(B), r, s)$ and hence $f^{-1}(B)$ is a fuzzy (r, s)-semi-preopen set. Therefore f is fuzzy (r, s)-semi-precontinuous.

4. Fuzzy (r, s)-semi-preopen and fuzzy (r, s)-semi-preclosed mappings

We define the notions of fuzzy (r,s)-semi-preopen and fuzzy (r,s)-semi-preclosed mappings on intuitionistic fuzzy topological spaces in Šostak's sense, and then we investigate some of their properties.

Definition 4.1. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r,s)\in I\otimes I$. Then f is called

- (1) a fuzzy (r, s)-semi-preopen mapping if f(A) is a fuzzy (r, s)-semi-preopen set in Y for each fuzzy (r, s)-open set A in X,
- (2) a fuzzy (r, s)-semi-preclosed mapping if f(A) is a fuzzy (r, s)-semi-preclosed set in Y for each fuzzy (r, s)-closed set A in X.

Remark 4.2. It is obvious that every fuzzy (r,s)-semiopen(resp. fuzzy (r,s)-semiclosed) and every fuzzy (r,s)-preopen(resp. fuzzy (r,s)-preclosed) mapping is fuzzy (r,s)-semi-preopen(resp. fuzzy (r,s)-semi-preclosed). However, the following examples show that all of the converses need not be true.

Example 4.3. Let $X = \{x, y\}$ and let A_1 , A_2 and B be intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0.9, 0.1), A_1(y) = (0.5, 0.4);$$

$$A_2(x) = (0.4, 0.5), \ A_2(y) = (0.4, 0.2);$$

and

$$B(x) = (0.5, 0.4), \ B(y) = (0.3, 0.4).$$

Define $\mathcal{T}:I(X)\to I\otimes I$ and $\mathcal{U}:I(X)\to I\otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly \mathcal{T} and \mathcal{U} are SoIFTs on X. Consider a mapping $f:(X,\mathcal{T})\to (X,\mathcal{U})$ defined by f(x)=x and f(y)=y. Since $B\subseteq \operatorname{int}(\operatorname{cl}(B,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=\underline{1}$ in $(X,\mathcal{U}),\,B$ is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen set in (X,\mathcal{U}) . Also, $f(A_1)$ is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen set, because $B\subseteq f(A_1)=A_1\subseteq\underline{1}=\operatorname{cl}(B,\frac{1}{2},\frac{1}{3})$ in (X,\mathcal{U}) . Thus f is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen mapping. But $f(A_1)=A_1$ is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semiopen set in (X,\mathcal{U}) , because $A_1\not\subseteq\operatorname{cl}(\operatorname{int}(A_1,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=\underline{0}$ in (X,\mathcal{U}) . Thus f is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semiopen mapping.

Example 4.4. Let $X = \{x, y\}$ and let A_1 , A_2 and B be intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0.5, 0.3), A_1(y) = (0.2, 0.3);$$

$$A_2(x) = (0.2, 0.5), A_2(y) = (0.2, 0.2);$$

and

$$B(x) = (0.2, 0.6), B(y) = (0.1, 0.3).$$

Define $\mathcal{T}:I(X)\to I\otimes I$ and $\mathcal{U}:I(X)\to I\otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly \mathcal{T} and \mathcal{U} are SoIFTs on X. Consider a mapping $f:(X,\mathcal{T})\to (X,\mathcal{U})$ defined by f(x)=x and f(y)=y. Since $B\subseteq \operatorname{int}(\operatorname{cl}(B,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=\operatorname{int}(A_2^c,\frac{1}{2},\frac{1}{3})=A_2$ in $(X,\mathcal{U}),B$ is fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen in (X,\mathcal{U}) . Also, A_1 is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen set in (X,\mathcal{U}) , because $B\subseteq f(A_1)=A_1\subseteq\operatorname{cl}(B,\frac{1}{2},\frac{1}{3})=A_2^c$ in (X,\mathcal{U}) . Hence f is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -semi-preopen mapping. But $f(A_1)=A_1$ is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen set in (X,\mathcal{U}) , because $A_1\not\subseteq\operatorname{int}(\operatorname{cl}(A_1,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=\operatorname{int}(A_2^c,\frac{1}{2},\frac{1}{3})=A_2$ in (X,\mathcal{U}) . Thus f is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ -preopen mapping.

Theorem 4.5. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then f is a fuzzy (r,s)-semi-preopen mapping if and only if $f(\operatorname{int}(A,r,s)) \subseteq \operatorname{spint}(f(A),r,s)$ for each intuitionistic fuzzy set A in X.

Proof. Let f be a fuzzy (r,s)-semi-preopen mapping. Since $\operatorname{int}(A,r,s)$ is fuzzy (r,s)-open in X, $f(\operatorname{int}(A,r,s))$ is a fuzzy (r,s)-semi-preopen set in Y. Hence

$$\begin{array}{lcl} f(\operatorname{int}(A,r,s)) & = & \operatorname{spint}(f(\operatorname{int}(A,r,s)),r,s) \\ & \subseteq & \operatorname{spint}(f(A),r,s). \end{array}$$

Conversely, let A be a fuzzy (r,s)-open set in X. By hypothesis, $f(A) = f(\text{int}(A,r,s)) \subseteq \text{spint}(f(A),r,s) \subseteq f(A)$. So f(A) = spint(f(A),r,s). Thus f(A) is a fuzzy (r,s)-semi-preopen set in Y. Hence f is a fuzzy (r,s)-semi-preopen mapping. \square

Theorem 4.6. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then f is a fuzzy (r,s)-semi-preclosed mapping if and only if $\operatorname{spcl}(f(A),r,s) \subseteq f(\operatorname{cl}(A,r,s))$ for each intuitionistic fuzzy set A in X.

Proof. Let f be a fuzzy (r,s)-semi-preclosed mapping. Since $\operatorname{cl}(A,r,s)$ is a fuzzy (r,s)-closed set in X, $f(\operatorname{cl}(A,r,s))$ is a fuzzy (r,s)-semi-preclosed set in Y. Since $f(A) \subseteq f(\operatorname{cl}(A,r,s))$, we have $\operatorname{spcl}(f(A),r,s) \subseteq f(\operatorname{cl}(A,r,s))$. Conversely, let A be a fuzzy (r,s)-closed set in X. By hypothesis, $f(A) \subseteq \operatorname{spcl}(f(A),r,s) \subseteq f(\operatorname{cl}(A,r,s)) = f(A)$. So $f(A) = \operatorname{spcl}(f(A),r,s)$. Thus f(A) is a fuzzy (r,s)-semi-preclosed set in Y. Hence f is a fuzzy (r,s)-semi-preclosed mapping. \square

References

- [1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems **20** (1986), 87–96.
- [2] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. **24** (1968), 182–190.
- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness: Fuzzy topology*, Fuzzy Sets and Systems **49** (1992), 237–242.
- [4] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89.
- [5] D. Çoker and M. Demirci, *On intuitionistic fuzzy points*, Notes IFS 1 (1995), no. 2, 79–84.

- [6] D. Çoker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, BUSEFAL 67 (1996), 67–76.
- [7] H. Gürçay, D. Çoker, and A. Haydar Eş, *On fuzzy continuity in intuitionistic fuzzy topological spaces*, J. Fuzzy Math. **5** (1997), 365–378.
- [8] I. M. Hanafy, *Intuitionistic fuzzy functions*, International Journal of Fuzzy Logic and Intelligent Systems **3** (2003), 200–205.
- [9] Eun Pyo Lee, Semiopen sets on intuitionistic fuzzy topological spaces in Sostak's sense, J. Fuzzy Logic and Intelligent Systems 14 (2004), 234–238.
- [10] Seok Jong Lee and Jin Tae Kim, Fuzzy (r, s)irresolute maps, International Journal of Fuzzy Logic
 and Intelligent Systems **7** (2007), 49–57.
- [11] Seok Jong Lee and Eun Pyo Lee, Fuzzy (r,s)semicontinuous mappings on intuitionistic fuzzy topological spaces in Sostak's sense, J. Fuzzy Logic and
 Intelligent Systems **16** (2006), 108–112.
- [12] Seung On Lee and Eun Pyo Lee, Fuzzy(r, s)-preopen sets, International Journal of Fuzzy Logic and Intelligent Systems 5 (2005), 136–139.
- [13] A. A. Ramadan, *Smooth topological spaces*, Fuzzy Sets and Systems **48** (1992), 371–375.
- [14] A. P. Šostak, *On a fuzzy topological structure*, Suppl. Rend. Circ. Matem. Janos Palermo, Sr. II **11** (1985), 89–103.
- [15] S. S. Thakur and S. Singh, *On fuzzy semi-preopen sets* and fuzzy semi-precontinuity, Fuzzy Sets and Systems **98** (1998), 383–391.

저 자 소 개

Seok Jong Lee

한국 퍼지 및 지능시스템학회 부회장 현재 충북대학교 수학과 교수 제 15권 1호(2005년 2월호) 참조 E-mail: sjl@cbnu.ac.kr

Jin Tae Kim

현재 충북대학교 수학과 박사과정 E-mail: kjtmath@hanmail.net