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Interval-valued Choquet integrals and applications in pricing risks
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Abstract

Non-additive measures and their corresponding Choquet integrals are very useful tools which are used in both
insurance and financial markets. In both markets, it is important to to update prices to account for additional
information. The update price is represented by the Choquet integral with respect to the conditioned non-additive
measure. In this paper, we consider a price functional H on interval-valued risks defined by interval-valued Choquet
integral with respect to a non-additive measure. In particular, we prove that if an interval-valued pricing functional H
satisfies the properties of monotonicity, comonotonic additivity, and continuity, then there exists an two non-additive

measures iy, i; such that it is represented by interval-valued choquet integral on interval-valued risks.
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1. Introduction

Murofushi and Sugeno [9] have studied some charac-
terizations of Choquet integrals. Choquet integral allow
to define Choquet price, Tolerant or intolerant character,
and insurance price, etc.(seel8,10,11,12,13,14)).

The set-valued Choquet integral was first introduced
by Jang, Kil, Kim and Kwon [3] and restudied by Zhang,
Guo and Lia [15]. Theory about set-valued integrals has
drawn much attention due to numerous applications in
mathematical economics, information theory, expected
utility theory, expected utility theory, and risk analy-
sis(seef1,2,15]). Based on this, we have been researching
interval-valued integrals and giving various formulas
used in the above area mentioned (seel3,45,6,71).

We note that non-additive measures and their corre-
sponding Choquet integrals are very useful tools which
are used in both insurance and financial markets. In both
markets, it is important to update prices to account for
additional information. The update price is represented
by the Choquet integral with respect to a non-additive
measure.

In this paper, we define igned interval-valued Choquet
intgerals with respected to a non-additive measure and
investigate some applications in pricing risks. We also
introduce a price functional A defined by Choquet in-
etgral on interval-valued risks. We note that inter—
val-valued risks mean ambiguity risks.

In section 2, we list various definitions and nota-
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Choquet integrals, non-additive measures, interval-valued risks, updated prices.

tions of interval numbers, interval-valued risks, signed
Choquet integrals, and signed interval-valued Choquet
integrals. In section 3, we introduce the concept of the
symmetric Choquet integral and define the symmetric in-
terval-valued Choquet integral. We also define a price
functional H defined by Choquet integral on inter-
val-valued risks and discuss some characterizations of
them. Furthermore, we prove that that if an inter-
val-valued pricing functional H satisfies the properties of
monotonicity, comonotonic additivity, and continuity, then
there exists an two non-additive measures g, u, such
that it is represented by interval-valued choquet integral
on interval-valued risks.

2. Preliminaries and Definitions

Let {2 be the space of outcomes, ¥ the set of all risks,
and J a o-algebra of subsets of f2.

Definition 2.1. (1) A set function pgon a measurable
space (2,7) is called a non-additive measure if
u(2)=0 and psatisfies monotonicity(with respect to
set inclusion), that is,

n(d) < u(B),

whenever 4,B€ J, AC B.

(2) 1 is said to be lower semi-continuous if for every
increasing sequence {4, } of measurable sets,

p(UC_ A =1imu(4,).

n—c0
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(3) u is said to be upper semi-continuous if for every
decreasing sequence {A4,} of measurable sets and

I'L(AI) < oo,

u(mo;:lAn):: lim Ll(1411)'
#—>00
(4) p is sald to be continuous if it is both lower
semi—continuous and upper semi-continuous,
(5) p is said to be submodular if

p(AUB)+u(ANB) < p(A4) + pu(B),

for all A, Be 7.

(6) p is said to be subadditive if the above inequality
holds for all 4,B€ J with ANB= g,

(7) If the reverse inequality holds, then p is said to be
supermodular (superadditive).

Because p is defined on a o-algebra, it has a con-

jugate, or dual, measure /;on J, defined by

p(A)=p() - p(a),
in which A°=02— A,

Definition 2.2 Let z be a measurable real-valued func-
tion on {2 and g a non-additive measure. Then we de-

fine the decumulative distribution function
Gu,z :R— [0: o ) by

Guolz)=pfe>al,

for all @« € R.

We note that if = represents monetary lossor gain,
then call = a risk; risks are not necessarily bounded(see
[14]). When the functions ¢ and z are clear from the
context, we write G for G, .

Definition 2.3.([9,10,13}) (1) The Choquet integral of a
risk = is

G@)= [ 6@ -n@ldat [ Glalda,

— oo

in which the right-hand side is the sum of two(possibly

improper) Riemann integrals.

(2) A risk z is called c-integrable if the Choquet integral
of z can be defined and its value is finite.

Definition 2.4. Risks z,y are said to be comonotonic,
denoted by = ~ y if there are no points w,w € §2 such
that z(w) >z (w') and y(w) > y(w').

Theorem 2.5.([8,9,10,11,1213,14]) Let p# be a non-addi~
tive measure and nonnegative risks x,y: 2—[0, 0},
Then we have as followings.
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(D Ifz <y, then C,(z) < C,ly).
(2 Ifz~y and a,b € [0,00), then
Clax +by)=aC,(z)+bC,(y).

Theorem 2.6.(Appendix A([14])) Let # be a conjugate
measure of a non-additive measure f.

(DI AETJ and z is a risk, then C,(1,)=p(4) and
C(—A)=— Cp(x)

}

(2) If z is a risk and a = 0,b € R, then
Clax+b)=aC,(z)+bu(2).

(3) If z,y are risks and z < y, then
Clz)< Cly).

(4) If p is submodular, and if z,y are bounded from be-
low, then
Clz+y)< Clz)+ Cy).

(5) If z,y are comonotonic risks, then
Cz+y)=C(z)+ Cly).

Definition 2.7. ([13]) Let h:¥—R be a pricing

functional.

(1) h is said to be monotone if z,y € ¥ and z <y,
then h(z) < h(y).

(2) h is said to be comonotonic additive if z,y € ¥ and
z ~ vy, then
h{z+y)=h(z)+h(y).

(3) h is said to be continuous if € ¥ and a = 0;
then
lim  h(max (x — 0,0)) = h(max (z,0)),
a—0"
lim A(min{z,a))=h(z), and
lim  A{max (z,a))=h(z).

Theorem 2.8. If h®(z)= C,(z) and p is continuous,
then h® is continuous.
Proof. We claim that (i) for all sequence {a,} with

Lim A°(max (z — o,,,0)) = h (max (z,0)),

n—o0

(i) for all sequence {a,} with «,—>o as n—oo,

Lim A°(min (z, ov,,)) = h (z),
(iii) for all sequence {«,} with a,— — % as n—oo,
Lim A°(max (z, o)) = h(x ).

n—c0

I {a,} is a se-

quence with a,~—~0+ as n—oo, then we have
max (z — a,,0) < max (x —a,,;,0) for all
n=1,2, ---. Since p is upper sem-continuous,
by monotone covergence theorem for Choquet in-
tegral, (i) holds. If {a,} is a sequence with



®,—° as n—co, then min (z, a,) <

< min (z, @, , ) for all n=1,2, ---. Since pu is
upper semi-—continuous, by monotone covergence
theorem for Choquet integral, (ii) holds. If {e,}
is a sequence with a,— — 00 as n—0o0, then
min (z, o) < min (z, o, 4 1) for all
n=1,2, ---. Since p is lower semi-continuous,
by monotone covergence theorem for Choquet in—

tegral, (iii) holds.

3. Pricing functionals on interval-valued
risks.

Throughout this paper, we denote
IR)={[a,b]| a,b ERand a <b}.

Then an element in J(R) is called an interval number.
On the interval numbers /(R )}, we define the following
operations; for each pair [a,b],[c,d] EIR) and k € R,

[a,b] +[c,d] =[a+ecb+d],
[a,b] - [c,d] =[a-cha-dAb-cAb-d,
a-cVa-dvb-cVb-d]’

 [[ka,kb], k=0
k[a’b]_{kb,ka, k<0

la,b] <le,d] if and
b<d,

max { [a,b], [c,d]} < [aVe bVd],

min { [a,b], [c,d]} < [aAc,bAd].

only if a<e¢ and

}
}
It is easily to see that (Z/(R),dy) is a metric space,
where d; is the Hausdorff metric defined by
dy (A, B) = max {sup, ¢ 4inf, < Ja—bl,

SUPy Binfa e Ala_ b! }

for all A,B € I(R) (seel6,7]). We denote J for the set
of interval-valued risks from 2 to JRN\{ & }.

Definition 3.1. Let X= [z, 2] and Y=[y;,1,] €7 are
said to be comonotonic, denoted by X ~ ¥ if and only
if z; ~y, and T, ~ ¥,.

Definition 3.2. The Choquet integral of an inter-

val-valued risk X € 3 with respect to a non-additive
measure i is defined by

C.(X)={C,@)lz € S(X)}

where S(X) is the set of z-a.e. measurable selections of
X.
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(2) X is said to be c-integrable if
C(X)» @.

(3) X is said to be c-integrably bounded if there is a
c-integrable risk z; € J such that

| X(w) | =sup, e xwlrl < zo(w)

for all w € {2.

Theorem 3.3 (Theorem 3.16 (iii) [15]) Let x be a con~
tinuous non-additive measure. If a nonnegative inter—
val—valued risk

X= {xl,%] : Q_’I(R+)\{@}

is c-integrably bounded, then C,(X) is an interval
number, that is,

C

23

(X)= [CH(II ), Cu(wz ).

Definition 3.4. Let ,L_L be a conjugate measure of a
non-additive measure ¢ and H:¥—IR)\{@ } an in-
terval-valued pricing functional.
(1) H is said to be monotone if X,YEW¥ and
X<Y, then HX) < HY).

(2) H is said to be comonotonic additive if X, ¥ € v
and X ~ Y, then

HX+Y)=HX)+ H(Y).

(3) H is said to be continuous if X € ¥ and a = 0;
then
dy— lim H[max (z; — ,0), max (z, — @,0)]
a—0t

= H[max (.’1?1,0), max ("EQ/'O)]
dy— lim  H[min (z;,a), min (z,,a)] = H(X)

a—>c0

and dy— lim

a——

’

)

Hmax (z,,a), max (z,, o) = H(X).

Theorem 3.5. If we define an interval-valued pricing

functional H*: ¥ — I RON{@} by

H(X) = [h] (), b5 (2,)]

for all X=[z,,x,] € L;, then H° is monotone, comono-
tonic additive, and continuous on 7.
Proof. If X={[z,,2,] < Y=|[y,,y], then z, <y, for
i=1,2. By Theorem 2.6(3),

hi(z;) < hily;)

for ¢ =1,2. Thus,

H*(X) = [hi (z,), b3 (z,)]

< [A (?Jl ), RS (1, )] =H(Y).
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That is, H¢ is monotone. f X'= [z}, z,] ~ Y= [y, 9,],
then z; ~ y; for i =1,2. By Theorem 2.6(5),
hi(z; +y;) < hi(z;) + hi(y;)
for 1 =1,2. Thus,
H(X+ Y)=[h (x, +y;), 55 (z + 1]
=15 (1) + 13 (n), hS () + hs ()]
=[RS (2, ), B ()] + [ (1), 15 (v2)]
= H(X)+ H°(Y).
That is, H® is comonotonic additive. We recall that
dg([a,b], [c,d])=0 if and only if a=c and b=d.
Thus we can see that if H° is continuous, then h,; is

continuous for ¢ =1,2. Thus,
Lim dy (H(max (z;, ), max (z,, o)), H(X))

a—0 +

= Lim max {|h{max (z,, @) — hS (z, )],
a0+

hs (max (zy, ) — hj (2,1 }
=0.
Similarly, we have
dy— lm  H°[min (z;,0), min (z,,a)] = H°(X)

and
dy— lim

a— — ©

H|max (z,, o), max {z,, a)] = H(X).

That is, H° is continuous.
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