Abstract
At recent times, an essential issue in the replacement of the old analogue I&C to computer-based digital systems in nuclear power plants becomes the quantitative software reliability assessment. Software reliability models have been successfully applied to many industrial applications, but have the unfortunate drawback of requiring data from which one can formulate a model. Software that is developed for safety critical applications is frequently unable to produce such data for at least two reasons. First, the software is frequently one-of-a-kind, and second, it rarely fails. Safety critical software is normally expected to pass every unit test producing precious little failure data. The basic premise of the rare events approach is that well-tested software does not fail under normal routine and input signals, which means that failures must be triggered by unusual input data and computer states. The failure data found under the reasonable testing cases and testing time for these conditions should be considered for the quantitative reliability assessment. We presented the quantitative reliability assessment methodology of safety critical software for rare failure cases in this paper.