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An Efficient Implementation of Decentralized Optimal Power Flow

Balho H. Kim*

Abstract — In this study, we present an approach to parallelizing OPF that is suitable for distributed
implementation and is applicable to very large inter-connected power systems. The approach could be
used by utilities for optimal economy interchange without disclosing details of their operating costs to
competitors. It could also be used to solve several other computational tasks, such as state estimation
and power flow, in a distributed manner. The proposed algorithm was demonstrated with several case

study systems.
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1. Introduction

Since Dantzig and Wolfe [1] proposed their
decomposition principle for linear programming in 1960,
extensive work on large-scale mathematical programming
has followed including that performed by Lasdon and co-
workers [2, 3], and Takahara and Mesarovic et al. [4].
Recently, motivated by this influential work, various
approaches have been taken to parallelize power system
problems including reactive power optimization problem
and constrained economic dispatch problem [5, 6].

Dating back to the late 90's, Kim et al. [7, 8] modeled a
multi-area Optimal Power Flow in a distributed manner,
where they introduced the concept of artificial generators
and loads on the border buses connecting the adjacent
regions. Beginning with this noble approach, abundant
numerical techniques have been developed for solving
power system problems in decentralized methodologies [9,
10, 11, 12, 13, 14, 15].

In this study, we propose that the OPF be solved in a
decentralized framework, consisting of regions, using a price-
based mechanism that models each region as an economic unit.
In each region, a local processor would perform its own OPF
for the region and its border as in [7]. Regions interact by
adjusting flows between themselves depending on the prices
quoted for inter-regional interchanges.

2. Predictor-Corrector Proximal Multiplier
Method

In this section, we present the general concept of the
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proposed decomposition coordination method for solving
large-scale problems with separable structure: the
Predictor-Corrector Proximal Multiplier Method (PCPMM)
[16]. The PCPMM is basically based on the augmented
Lagrangian method and a variant of the Proximal Point
Algorithm (PPA), which has long been recognized as one
of the attractive methods for convex programming and
min-max-convex-concave programming,.

Consider a typical convex program with separable
structure of the form:

(P) min{f, (x)+ f,(z): Ax =2} (M

Then the augmented Lagrangian for problem (P) is
defined as

2

L(x,2,) = £,(x) + £,(2) + A" (Ax — 2) +—§||Ax-z

where A denotes a Lagrange multiplier and vy is a
constant. Augmented Lagrangians have several advantages
compared to standard Lagrangians. However, the principal
disadvantage for decomposition methods is the presence of

the term g” Ax—z”z in the L , which destroys the

separability between x and z, since they are linked by the
cross product term. This has long been recognized as one
of the major drawbacks of the augmented Lagrangian
approach, and a number of strategies have been proposed
to remove this difficulty [17, 18, 19, 20, 21].

In 1958, Uzawa suggested to simply minimize the
Lagrangian function L with respect to x and z (with A
fixed), then update the multiplier A [22]. In the method, both
f, and f, are assumed to be strongly convex, and this
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restricts its potential applications in many interesting problems.

In [20], Chen proposes another PPA-based splitting
method. It bears similarity with algorithms produced from
the alternating direction method in that it preserves
separability, but is completely different both in the
computational steps and in the assumptions involved in the
problem's data. In addition, PCPMM can be used for
parallel decomposition wherein a problem is decomposed
into many subproblems and solved independently at each
coordination step.

The key features of PCPMM in our study will be
presented first, and its applications for the distributed OPF
will be given in Section 3.

The predictor-corrector proximal multiplier method is
based on the propertics of Rockafellar's proximal method
of multipliers, and its primal-dual application [23], which
involves an augmented Lagrangian with an additional
quadratic proximal term.

Consider the following convex problem:

min{f(x):xeR"}, 3)

where f is a proper, lower-semi-continuous convex
function. To solve the problem is to find x such that

0edf(x).

Let us consider the problem of finding, for an arbitrary
maximal monotone operator 7, an x satisfying

0eT(x).

To solve this problem is to find a fixed point of Py(x)>

the resolvent of 7, which can be solved by the following
iterative method:

=P (x") = (I+%T)"'(x")- 4)

Method (4) is called the proximal point algorithm (PPA).
That is, starting from an initial point #° € R", the iterative
scheme of PPA is given as

W= (1 ﬁLaf)“(u") < u*" = arg min{ f(u) +£2k‘”” —ukHZ}’

k

& Bt —uFy e dof (u). (5)

Let us recall problem (1). In the proximal method of
multipliers, one has to apply the proximal point algorithm
to the penalized Lagrangian

1 2
L(x,z, )+ —|dAx -z, (6)
(1223t

in each minimization step. Then, using (5), one can

obtain

,Bk(xk _xk+1) e 8fu(x"+1)+AT(l" _’_IBL(Aka _Zk+l)) 3 (7)

k

ﬂk(zk — My e aﬂ(zk+1)+(/1k +ﬂL(Axk+1 —z*1y)- ®

k

This iterative scheme, however, cannot compute x**

and

separately because of the coupling term
(Ax*" —z*1). Chen [16] suggests the following iterative

scheme to remove this difficulty,

.ﬂk(xk —x"”)eafa(x"“)+AT(lk +_ﬂ1_(Axk —Zk))’ (9)

k

Bzt =2 e o, (M) + (A + ﬂL(Ax" —zty- (19)

k

k+

where the term  ( Ax*" —z*"') has been replaced with

(Ax* -Z%).
Similarly, from the conventional Lagrangian multiplier
update rule

ﬁkﬂ :/flk +L(Axk+1 _Zk+1) (11)
B

k

one can produce a prediction 1¥"of A**' by replacing
the term ( Ax**"! — z**') with (4x* — z%),

Ak =/'Lk+L(Axk—zk)« (12)
B

Then (9) and (10) can be rewritten as

' = argmin{f, (x) + (A**") + Ax + %Hx~ x"”z} (13)

M = argmin{f, (z) + (A*") + z + %”z - z"Hz}. (14)

Rearranging (12)-(14), one finally obtains the following
PCPMM algorithm for solving problem (1):

Algorithm - PCPMM
Step 1: Initialization

Step 2: Compute J*+1 — g% 4 _I_(Axk - z*5y.
k

Step 3: Solve
x* = arg min{ £, (x) + (") + Ax + %“x - x"||2}
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SR argmin{fl,(z)"‘(z"”)+ z +%”2_2k“2}

Step 4: Compute 2" = 1% 4y, (Ax*" — z*).
Step 5: Repeat Steps 2-4.

At each iteration, the algorithm computes two proximal
steps in the dual variables, the predictor step 1**' and the
corrector step A**', and one proximal step in the primal
variables. The algorithm preserves the good features of the
proximal method of multipliers, with the additional advantage
that it leads to a decoupling of the constraints, and is thus
suitable for parallel implementation. It has been proved that
under very mild assumptions on the problem's data, the
method is globally convergent at a linear rate [16, 24].

3. Implementation of PCPMM to Parallel
Optimal Power Flow

We propose a scenario where each individual utility
solves a modified OPF that includes its own service area
and the borders it shares with other utilities. The modified
OPF is similar to a standard OPF except that artificial
generators (dummy generators) are modeled at the border
buses. Naturally, the OPFs solved in each region can be
implemented with the fastest available algorithms.
However, it is also possible for each utility (equivalently,
region, or control area) to have a different OPF
implementation for its own area.

The overall algorithm involves alternating solutions of
individual OPFs and updates of prices. It converges, in
principle, to a solution of the overall multi-utility OPF,
yielding appropriate generation levels in each utility to
minimize overall production costs. The multipliers on the
constraints could be used to set prices for the exchange of
real and reactive power. However, alternative ways to
distribute savings, such as the split savings rule, can also
be used.

To minimize the coupling between the regions and
therefore maximize the solution speed, it is best to divide
the overall system in a way that minimizes the number of
transmission lines in the cutsets of lines defining the
regions. Fortunately, this will usually be consistent with
dividing a multi-utility system into individual utilities. This
is because typical utilities tend to have a relatively complex
mesh transmission system internally, but relatively few,
often radial, connections externally. In summary, the most
effective implementation of our parallel scheme
corresponds  well with the most likely institutional
implementation: division into regions along utility
boundaries. In our scheme, there is neither need for a
uniform implementation of OPF across all utilities, nor

need for all the utilities in the system to run full OPFs, so
long as each region can represent dummy generators in its
OPF or economic dispatch (ED). This means that the
parallel OPF can be implemented across a multi-utility
system without major disruption to existing OPF or ED
investments by individual utilities.

In this section, we will first present how an OPF
problem can be decomposed regionally using the
mathematical decomposition techniques described in the
previous section. Then details on the problem formulation
and practical implementation of the Distributed OPF
algorithm will be given, followed by a short description on
the inclusion of contingency constraints into our distributed
OPF scheme.

3.1 Regional Decomposition

In our distributed scheme, the regions buy and sell
electricity from adjacent regions at prices that are
coordinated by negotiations between adjacent regions. The
price-setting itself can be performed without a centralized
processor. The advantage of such decentralization is that
only synchronization information needs to be exchanged
globally, improving reliability in the event of
communication failure.

To illustrate the main issues in regional decomposition,
we will consider dividing a power system into two
overlapping regions. In the following section, we define
problem variables and constraints and then discuss the OPF
formulation, decomposition, and implementation.

3.1.1 Variables

Because of our emphasis on the decomposition rather
than on the OPF itself, we will follow [25] in not
distinguishing the controls from the dependent variables in
our formulation. Instead, we will distinguish the variables
by their geographical relationship to the regional
decomposition.

Consider Fig. 1, which shows the case of a single tie-line
joining regions g and b . Notice that the border variables
in the overlap region are denoted y , while the core

variables in regions ¢ and b are denoted x and z,
respectively. Between and common to the two regions there
is an overlap region, with a vector of variables denoted by
y - The entries in y are defined as follows. For each tie-

line we must include a bus in the border region. If there is no
bus already there, we create a “dummy bus.” Associated
with each dummy bus are the real and reactive power flows
through the bus and the voltage and angle at the bus. That is,
the vector j has four entries for each tie-line.

In addition, in Fig. 1 we display vectors of variables x
and z. The vector x consists of all the OPF variables that
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are relevant to region @ but not already included in y.
Similarly, z includes the region & variables not included
in y.In summary, region g has state vector (x, y), while
region b has state vector (v, z). The y variables are the
overlap or border variables, while y and z can be thought of
as core variables for regions o and b, respectively. In
typical systems, the vector 3 will be much smaller than

vectors x and z and we will make use of this observation in
our analysis of the decomposition.

Fig. 1. Decomposition of a power system into two overlapping
regions, a and b.

3.1.2 Constraints

We assume that the constraints on the system involve x
and y or y and z, but not x and z nor x, y, and z. That is, we
assume that the constraints in each region involve only the
core variables and the border variables for that region. This
assumption is reasonable for the power flow equations, since
the bus admittance matrix couples only those variables
pertaining to buses that are connected directly by a line. For
example, a tie-line limit would be represented as a constraint
on the flows to and from the border buses. If some of the
other constraints are functions of both x and z elements, then
this can be handled by moving more of the state vector into
the border vector y . That is, our assumption on the

dependence of constraints on core and border variables can
always be satisfied, but it may require us to increase the
dimension of y by enlarging the border region.

With this assumption, we can write the power flow
constraints for region g inthe form g (x,y)=0 and for

region b in the form g,(y,z)=0. Similarly, we can

write the inequality constraints for region q in the form
h,(x,y)<0 and for region b in the form 4, (y,z)<0.

The functions %, and /4, represent the line flow, voltage,

and contingency constraints in the individual regions.
Define the two sets: A={(x,y):g,(x,»)=0,

h,(x,y)<0} and B={(y,2):g,(y,2) =0,k (y,z) <0} .
Then a feasible power flow solution is a point (x,y,z)
that satisfies (x,y)e 4 and (y,z)eB.

3.2 OPF Formulation

With the above definition on variables and constraints,
the OPF problem can be written as

min (f,(0)+ £,(2)}> 1)

(y.2)eB

where we assume that the cost functions f, and f,

are convex approximations to the actual cost functions in
each region and that there is a unique solution to (15). We
decompose problem (15) into regions by duplicating the
border variables and imposing coupling constraints
between the two variables.

First, define the copies of y to be y and y,,

assigned to the regions a and b, respectively. Then
problem (15) is equivalent to:

. 2
min{f, )+ @)+ 2l i ya -2 =0 10

(y,2)eB

The quadratic term added to the objective does not affect
the solution since the constraint y —y, =0 will make
the quadratic term equal to zero at any solution; however,

when we decompose the problem, this term will
significantly aid in convergence [26].

3.3 Decomposition

Next we apply the three decomposition algorithms
described in the previous chapter to obtain sub-problems
for a distributed implementation.

Algorithm PCPMM
Similarly, using Algorithm-PCPMM (11)-(14), we obtain
the following regional OPF problems:

B
2

k+l K+t

(x o Z+(Zk+l)Tya},(17)

) =argmin{f, (x)+ Xy, -y,
(x,y,)ed

2 ~,
(=, 4") = argmin{,(2) T R A
Va2 )E.

where the Lagrange multiplier A is updated by (11)
and (12).

A natural implementation of the proposed Algorithm-
PCPMM is given in Fig. 2.

The telemeter and Dispatch steps require intra-regional
communication of data and control signals. The loop
termination criterion requires global communication, while
the Exchange step only requires communication between
adjacent regions. In the case of multiple regions, each
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region will solve an OPF for its core and border variables.
In Fig. 1, we illustrated a single tie-line between regions
a and b. At the borders bus, there is a real and reactive

Initialize x°,y?,y7,2° 2°;
=1

Telemeter load and topology data from each region to itJ
[processor;
Repeat{

Increment &;

In parallel, solve the regional OPF for region a and|
region b;

Exchange y* and

vy between regional

processors;
Update A<;
} Until »* and ¥ converge to within tolerance;

Dispatch generators according to OPF solution.

Fig. 2. Distributed implementation of parallel OPF.

power flow, measured for example in the direction from g
to b, and a voltage magnitude and phase. The dummy
generators are created by duplicating this bus. The border
variables are then y =(pgyv @) and y, =

(p,q,v,0,)" > respectively, the real and reactive power flow

and the voltage magnitude and phase at the copies of the
dummy bus in regions ¢ and b. The iterative process
drives the values of y and y, together.

4. Case Studies

Several case studies were performed to demonstrate the
proposed distributed OPF algorithm. The objectives of the case
studies are, first, to verify the viability of the algorithms in
practical implementation and, second, to test and compare the
overall performance of the algorithms. Performance
comparisons are based on the cpu times and number of
iterations required for desired accuracy.

For the case studies, a state-of-the art Interior-Point OPF
code (INTOPF) [7, 25] was employed. Non-contingency
constrained AC OPFs were performed for all cases with
real and reactive generator limits and line and voltage
constraints imposed. All computations were performed on
the Pentium-IV processor.

4.1 Case Study Systems

Data from the IEEE 118-bus Reliability Test System
and eight Texas utilities in the ERCOT (Electric
Reliability Council of Texas) power pool were used to

demonstrate the performance of the algorithm. Table 1
summarizes the test systems. The first column denotes the
system identification number, which will be used
throughout the paper instead of real names, the second
column shows the total number of buses in each system,
while the third and fourth columns reveal the number of
regions and the number of core buses in each region. The
fifth column displays the number of tie-lines that
interconnect the regions, while the sixth column indicates
the total number of lines in each complete system. The
last column shows the total per unit loads in the systems.
The five smaller systems consist of two, three, or four
copies of two IEEE Test Systems, while the four Texas
systems use data from two to eight Texas utilities.

Table 1. Case study systems.

Mo | Buses | Regicus Core Buses Ties | Lines | Load
1| 30 3 ug1e1d 6 [ 50 | 1%
2 | ™ 4 QN,105128.237 12 | 1100 | 209
3| 149 § 21L105126,237,365323 28 | 2145 | 395
4 | 1M 8 |2IL105128237,365,325,74213 53 | 2387 | 462

The objective to be minimized is the production cost for
active and reactive power. The cost of reactive power is
assumed to be 107 of the active power cost for each
generator, while real power costs were adapted from [27]
and [28].

In order to see how the algorithm responds to small
changes in system status, we solved a base-case and
several change-cases for each system. Each base-case was
solved from a flat start with initially no interchange on any
tie-line, while the change-cases were solved using the
solution of the base-casc as a starting point. The change-
cases were as follows:

* increase in demand of 5% at all demand buses;

* increase in demand of 10% at all demand buses;

* an outage of a single generator with capacity equal to
approximately 2-3% of the total system demand.

The change-cases demonstrate the tracking behavior of
the algorithm for an on-line application.

4.2 Stopping Criterion

We chose the maximum mismatch between the border
variables as the stopping criterion. To select the tolerance
on the maximum mismatch, we experimented with the
performance of the algorithm. We found that the choice
0.03 per unit maximum mismatch yielded a solution with
total costs that were within 0.1% of the optimal production
costs from the serial algorithm. Typically, the mismatches
on most buses were much smaller than 0.03 per unit.
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4.3 Test Results

Selected case study results are presented in this section.
To compare the overall performance of the algorithm, the
total cpu times and iteration counts are tabulated. Then the
speed-ups and efficiency of the algorithms are discussed.

The cpu time results from the undecomposed and the
parallel implementation of INTOPF code, which are
summarized in Tables 3 and 4, respectively, where all the
cpu times include the overheads necessary for reading data
and communicating among processors. As seen in Table 3,
the cpu times and the number of buses have almost a linear
relationship. Table 4 shows that the first iteration of the
INTOPF algorithm takes much more cpu time than each
subsequent iteration. Table 5 indicates the measured cpu
time for the base-case for the serial and parallel
implementations of the proposed algorithm. The estimated
efficiencies for the larger systems are between about 55
and 60%, based on the 0.03 per unit tie-line mismatch
criterion.

Table 2. Number Iterations for parallel OPF: Algorithm-

PCPMM.
Swstem Mumber Mol | Hod | No3 [ Nod
Bazed case i T 8 10
5% Demand Incr 5 5 7 ]
10% Demand Incr 4 5 5 ]
outage case 4 3 9 3

Table 3. CPU time for undecomposed OPF (sec).
Svstem Number || Mol No2 Mo.3 Nod
Base case 10,6 327 54,6 774

Table 4. Cumulative CPU time for parallel (decomposed)

OPF (sec).

Svstem Hunber Nol Ho.2 Mo, 3 Ho.4
Ferafico=1 13 a5 63 63
teratinn=5 41 101 11,8 11.3
Iteretion=10 6 4 13.4 16,5 171

Table 5. Speed-Up and Efficiency.
Svstem Munber Nol | NoZ | Ho32 | Nod

(Und(;imoesed) 106 | 327 | 46 | T4
Cputime (Decomposed] 46 108 | 146 | 171
Speed-Up 23 a0 37 45
Efficiency (%) 6,7 75.0 61,7 56,3

The case study results show that almost all of the
potential production cost savings are achieved within 4 or 5
iterations. If we terminate after 4 or 5 iterations, then the
efficiency improves to 80%, with production costs still

within 0.1% of optimal amount. The size of our test
systems is modest and the ratio of the number of borders to
core variables is large. We expect better performance for
larger systems with lower ratios of border to core variables.

5. Conclusion

We have demonstrated a parallel algorithm for the OPF
problem that is cable of distributed implementation. Based
on the case study results, the proposed algorithm has a
great advantage to the conventional undecomposed
algorithm.

Our future study is first to explore ways to improve
convergence of the algorithm. An important challenge is to
theoretically analyze the improvement in convergence
speed due to the quadratic term. Finally, incorporation of
contingency constraints will also be studied. We will
investigate ways to represent security constraints and to
solve the Security Constrained Optimal Power Flow
(SCOPF) efficiently and reliably in a distributed manner.
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