[ $H_{\infty}$ ] Control of Time-Delayed Linear Systems with Limited Actuator Capacities

제한된 구동기 용량을 갖는 시간지연 선형시스템의 $H_{\infty}$ 제어

  • 이연규 (충북대학교 대학원 제어계측공학과) ;
  • 김진훈 (충북대학교 전기전자공학부)
  • Published : 2007.09.01

Abstract

In this paper, we consider the design of $H_\infty$ high-gain state feedback control for time-delayed linear systems with limited actuator capacities. The high-gain control means that the control permits the predetermined degree of saturation. Based on new Lyapunov-Krasovskii functional, we derive a result in the form of matrix inequalities. The matrix inequalities are consisted of LMIs those confirm the positive definiteness of Lyapunov- Krasovskii functional, satisfaction of predetermined degree of saturation, reachable set and $L_2$ gain constraint. The result is dependent on the bound of time-delay and its rate, predetermined degree of saturation, actuator capacity, and the allowed size of disturbances. Finally, we give a numerical example to show the effectiveness and usefulness of our result.

Keywords

References

  1. P. O. Gutman and P. Hagander, 'A new design of constrained controllers for linear systems,' IEEE Trans. Autom. Contrl, vol. 30, pp. 22-33, 1985 https://doi.org/10.1109/TAC.1985.1103785
  2. J. -H. Kim and Z. Bien, 'Robust stability of uncertain linear systems with saturating actuators,' IEEE Trans. Autom. Control, vol. 39, pp. 202-207, 1994 https://doi.org/10.1109/9.273369
  3. D. S, Bernstein and A N, Michel(Eds), 'Special issue:saturating actuator,' Int, J. Robust and Nonlinear Control, vol. 5, pp. 375-540, 1995 https://doi.org/10.1002/rnc.4590050502
  4. Z. Lin and A Saberi, 'A semi-global low-and-high gain design technique for linear systems with input saturation-stabilization and disturbance rejection,' Int, J. Robust and Nonlinear Control, vol. 5, pp. 381-398, 1995 https://doi.org/10.1002/rnc.4590050503
  5. Y. xia and Y. Jia, 'Robust control of state delayed systems with poly topic type uncertainties Via parameter-dependent Lyapunov functionals,' Syst. Control Lett., vol. 50, pp. 183-193, 2003 https://doi.org/10.1016/S0167-6911(03)00153-1
  6. E. Fridman, A. Pila and U. Shaked, 'Regional stabilization and $H_{\infty}$ control of time-delay systems with saturating actuators,' Int, J. Robust and Nonlinear Control, vol. 13, pp. 885-907, 2003 https://doi.org/10.1002/rnc.852
  7. Niculescu, S. -I., neto, A. T., Dion, J. -M., and Dugard, L., 1995 'Delay-Dependent Stability of Linear Systems with Delayed State: An LMI Approach,' Proc. 34th IEEE Conf. on Decision and Control, pp. 1495-1497
  8. M. Wu, Y. He, J. H. She and G. P. Liu 'Delay-dependent criteria for robust stability of time-varying delay systems,' Automatica, vol. 40, pp. 1435-1439, Mar, 2004 https://doi.org/10.1016/j.automatica.2004.03.004
  9. E. Fridman and U. Shaked, 'An improved stabilization method for linear time-delay systems,' IEEE Trans. Autom. Control, vol. 47, no. 11,pp. 1931-1937, Nov. 2002 https://doi.org/10.1109/TAC.2002.804462
  10. X. Li and C. E. de Souza, 'Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach,' IEEE Trans. Autom. Control, vol. 42, no. 8,pp. 1144-1148, Aug. 1997 https://doi.org/10.1109/9.618244
  11. E. Fridman and U. Shaked, 'New bounded real remma for time-delay systems and their applications,' IEEE Trans. Autom. Control, vol. 46, no. 12, pp. 1973-1978, Dec. 2001 https://doi.org/10.1109/9.975503
  12. Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, 'Delay-dependent robust stabilization of uncertain state-delayed systems,' Int. J. Control, vol. 74 pp.1447-1455, 2001 https://doi.org/10.1080/00207170110067116
  13. P. Park, 'A delay-dependent stability criterion for system with uncertain time-invariant delays,' IEEE. Trans. Autom. Control, vol. 44,no. 4,pp. 876-877, Apr, 1999 https://doi.org/10.1109/9.754838
  14. S.-I. Niculescu, ' $H_{\infty}$ Memoryless control with an ${\alpha}$-stability constrint for time-delay systems: An LMI approach,' IEEE. Trans. Autom. Control, vol. 43,no. 5, pp. 739-743, May, 1998 https://doi.org/10.1109/9.668850
  15. J. H. Kim, 'Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty,' IEEE. Trans. Autom. Control, vol. 46, no. 5, pp. 789-792, May, 2001 https://doi.org/10.1109/9.920802
  16. L. Zaccarian and A. R. Teel, 'A common framework for anti-windup, bumpless transfer and reliable design,' Automatica, vol. 38, pp. 1735-1744, 2002 https://doi.org/10.1016/S0005-1098(02)00072-9
  17. H. Gao and C. Wang, 'Delay-dependent robust $H_{\infty}$ and $L_{2}-L_{\infty}$ filtering for a class of uncertain nonlinear time-delay systems,' IEEE. Trans. Autom. Control, vol. 48,no. 9, pp. 1661-1666, Sep, 2003 https://doi.org/10.1109/TAC.2003.817012
  18. Y. He, M. Wu, J. H. She and G. P. Liu 'Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties,' IEEE. Trans. Autom. Control, vol. 49, no. 5,pp. 789-792, May, 2004
  19. S. Xu and J. Lam 'Improved delay-dependent stability criteria for time-delay systems,' IEEE. Trans. Autom. Control, vol. 50, no. 3,pp. 384-387, Mar, 2005 https://doi.org/10.1109/TAC.2005.843873
  20. M. S. Mahmoud and A. Ismail 'New results on delay-dependent control of time-delay systems,' IEEE. Trans. Autom. Control, vol. 50, no. 1,pp. 95-100, Jan, 2005 https://doi.org/10.1109/TAC.2004.841130
  21. X. M. Zhang, M. Wu, J. H. She and Y. He 'Delay-dependent stabilization of linear systems with time-varying state and input delays,' Automatica, vol. 41,pp. 1405-1412, May, 2005 https://doi.org/10.1016/j.automatica.2005.03.009
  22. S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory. Philadelphia, PA: SIAM, 1994
  23. T. Hu and Z. Lin, Control Systems with Actuator Saturation, Birkhauser, 2001
  24. W. J. Rogh, Linear System Theory. Upper Saddle River, New Jersey:Prentice Hall, 1996